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Abstract

Rodrigues, Mariana de Aragão Ribeiro; Aguiar, Alexandre Street de (Ad-
visor); Carlos, Érica Telles (Co-Advisor). Mapping network losses
and distribution line flows with Artificial Neural Networks. Rio
de Janeiro, 2021. 108p. Dissertação de Mestrado – Departamento de En-
genharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro.

The power flow calculation on an electric network consists of determining the
network’s state, power flows and electrical losses on the lines, and total losses
on the feeder. In this type of problem, the system’s modeling is static, and the
network is represented by a set of algebraic equations and inequations. Different
solution methods were proposed in the literature to perform power flow
calculations. However, for distribution networks, these methods must be able
to model, with sufficient details, some unique features of these systems, such as
their near radial structure, the unbalanced nature of the loads, and distributed
generators’ insertion. Besides that, modeling the consumption pattern in
distribution systems is more complex, and the line parameters are more difficult
to be obtained when compared to the transmission system. Hence, applying
traditional methods for power flow calculations in distribution networks may
lead to divergent solutions. Within this context, this work proposes a new
approach for power flow calculations in distribution systems based on Machine
Learning. The proposed models use Artificial Neural Networks (ANNs) to
predict the active internal losses of a distribution network and the power
flows at the borders with the transmission system. Numerical simulations
demonstrate the effective performance of the proposed approach, as well as
its computational advantages over benchmark software programs since, once
trained, ANNs can approximate power flow calculations extremely fast, as only
matrix operations are needed. Moreover, the work presents an application of
the ANN methodology proposed: predictions of the flows at the borders with
the transmission network were used to generate optimal demand contracts for
a real distribution system in Brazil.

Keywords
Power flow; Distribution systems; Machine Learning; Artificial

Neural Networks; Demand contracts.
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Resumo

Rodrigues, Mariana de Aragão Ribeiro; Aguiar, Alexandre Street de;
Carlos, Érica Telles. Mapeamento de perdas elétricas e fluxos de
potência em linhas de distribuição com Redes Neurais Artifici-
ais. Rio de Janeiro, 2021. 108p. Dissertação de Mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Ja-
neiro.

O cálculo do fluxo de potência em uma rede elétrica consiste em determinar
o estado da rede, os fluxos e perdas elétricas nas linhas e as perdas internas
totais no sistema. Nesse tipo de problema, a modelagem do sistema é estática
e a rede é representada por um conjunto de equações e inequações algébricas.
Diferentes métodos de solução foram propostos na literatura para realizar
cálculos de fluxo de potência. No entanto, para redes de distribuição, esses
métodos devem ser capazes de modelar, com detalhes suficientes, algumas
características únicas desses sistemas, como sua estrutura quase radial, a
natureza desequilibrada das cargas e a inserção de geradores distribuídos. Além
disso, a modelagem do padrão de consumo nos sistemas de distribuição é mais
complexa e os parâmetros das linhas são mais difíceis de serem obtidos, quando
comparados com o sistema de transmissão. Portanto, a aplicação de métodos
tradicionais para cálculos de fluxo de potência em redes de distribuição pode
levar a soluções divergentes. Nesse contexto, o presente trabalho propõe
uma nova abordagem para cálculos de fluxo de potência em sistemas de
distribuição, baseada em Machine Learning. Os modelos propostos utilizam
Redes Neurais Artificiais (RNAs) para prever as perdas ativas internas de
uma rede de distribuição e os fluxos de potência nas fronteiras com o sistema
de transmissão. Simulações numéricas demonstram o desempenho eficiente da
abordagem proposta, além de suas vantagens computacionais em relação aos
softwares normalmente utilizados nesse tipo de estudo pois, uma vez treinadas,
as RNAs podem aproximar, de modo extremamente rápido, cálculos de fluxo
de potência, já que apenas operações matriciais são realizadas. Além disso,
o trabalho apresenta uma aplicação da metodologia proposta: as previsões,
obtidas pela RNA, para os fluxos nas fronteiras com a rede de transmissão
foram utilizadas para gerar contratos ótimos de demanda para um sistema de
distribuição real no Brasil.
Palavras-chave

Fluxo de potência; Sistemas de distribuição; Machine Learning;
Redes Neurais Artificiais; Contratos de demanda.
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1
Introduction

In a power system, the determination of voltages at the buses, power flows
on the lines, and electrical losses on the feeders is mandatory for obtaining
the network’s state and, hence, for its proper operation. Those variables
can be determined through power flow calculations, which constitute a set
of algebraic nonlinear equations/inequations that can be solved using either
classical iterative methods or Machine Learning (ML) techniques.

Distribution systems, however, belong to a category of “ill-conditioned”
power systems due to their unbalanced nature, which has been intensified,
nowadays, by the growth in the installation of distributed generation units
in these networks (Shirmohammadi et al., 1988; Cheng and Shirmohammadi,
1995). Thus, power flow calculations in distribution networks require modified
approaches, such as the Backward-Forward Method and the Current Injection
Method (Kocar et al., 2014).

The new renewable generation units being installed in the distribution
networks add complexity to the grids since they may overload lines and other
equipment due to the reverse flows they produce (Donnot et al., 2017; Pertl
et al., 2016). Hence, they introduce a significant level of stochasticity to the
system planning (Fioretto et al., 2019). Also, most of these units are customer-
owned, meaning that distribution utilities do not have control over their siting
locations, leading to impacts on the operation and planning of distribution
systems (Barker and Mello, 2000).

Besides the aforementioned difficulties in power flow calculations and on
the system planning and operation, other common challenges faced by distri-
bution operators may include the impact on voltage conditions at customers
and utility equipment. These impacts may be positive, improving power qual-
ity and reducing electrical losses, for example, or negative, when they have the
opposite effect (Barker and Mello, 2000). In this work, we analyze the impacts
of distributed generation in the active losses of a distribution system, which
constitute an important economic indicator for the assessment of utilities (Hsu
et al., 1995).

In addition to the impacts caused by the insertion of distributed genera-
tion on the grids, another critical aspect for distribution operators consists of
obtaining power flows in the borders between the distribution and transmission
systems. The determination of these power flows is of paramount importance
for the distributor’s costs due to the fact that, at each connection point, dis-
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Chapter 1. Introduction 15

tributors must pay a tariff for the use of the transmission system, applied to
an annual demand contract (Telles et al., 2018).

As mentioned, ML techniques may constitute a modern approach to
power flow calculations in distribution systems. Among these techniques,
Artificial Neural Networks (ANNs) consist of the main approach for power flow
studies due to the following reasons: they do not require any prior knowledge
of the variables related to the problem; can handle situations of incomplete
information; are extremely useful for solving nonlinear problems (Fikri et al.,
2018).

In the literature, ANNs are addressed to many different applications in
the power flow analysis, such as: suggest corrective actions to operators, in
order to prevent violations of operational limits (Donnot et al., 2017; Donnot,
2019); obtain load estimations (Cataliotti et al., 2019); estimate losses in a
power system (Hsu et al., 1995; Leal et al., 2006; Chao et al., 2017; Kahef
et al., 2018); estimate bus voltage magnitudes and angles (Ivanov et al., 2014);
approximate and speed up calculations in Probabilistic Power Flow problems
(Yang et al., 2020; Xiang et al., 2020a,b; Chatzos et al., 2020), for example.

In this work, we explore the use of ANNs as a potential power flow
technique for distribution systems that can act both in predicting the system’s
losses and the power flows on the system’s lines. Once an ANN is trained, we
show that it can predict active losses or power flows much faster than classical
approaches, considered, in this work, as benchmark methods, and with good
accuracy. Finally, we compare the values obtained for demand contracts in the
borders between transmission and distribution systems, given the power flows
obtained by the benchmark methods and predicted by the trained ANN.

To that end, we propose ANN architectures that consider, as inputs,
only values for generations and loads for each system’s bus. This eliminates
the need for topology features, such as line resistance and reactance values,
which are difficult to be obtained in the case of distribution networks (Hsu
et al., 1995). Numerical simulations are conducted based on a modified version
of the IEEE 34-bus system containing photovoltaic generations and on a real
Brazilian distribution system.

1.1
Contributions

The main contributions of this work are:

1. Review classical methods for power flow calculations and their applica-
tions at the distribution level.
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2. Review applications of Artificial Intelligence (AI) techniques in power
systems.

3. Propose novel formulations for power flow studies at the distribution
level, based on the ANNs methodology. In these studies, our goal was to
train the ANNs to predict the system’s losses, and power flows at the
borders with the transmission system. To do that, we adopted, as case
studies, the IEEE 34-bus system and a real Brazilian distribution system,
respectively. The results demonstrate that, for both cases, the ANNs
predictions are able to meet, with good accuracy, the values for active
losses and active flows obtained by the software OpenDSS (EPRI, 2016)
and Organon (HPPA, 2018), respectively (we emphasize that the use,
by itself, of these programs also constitutes a contribution of this work
and will be discussed in Chapters 3 and 4). Besides that, the potential
reduction in the time required for traditional methods to run power flow
calculations and eliminating the necessity of knowing many topology
features for each operating point simulated can be highlighted.

4. Apply the proposed methodology for power flow studies in distribution
systems to generate demand contracts at the borders with the trans-
mission system, reducing the time required to simulate the scenarios
considered in the optimization model that returns the optimal contracts.

1.2
Outline

The remainder of this work is organized as follows: Chapter 2 presents
a Literature review of methods for power flow calculations in distribution
systems based on traditional methods, AI techniques, and ANNs. Chapter
3 describes the methodologies adopted by classical iterative methods, such as
Newton’s Method and the Current Injection Method, and modern approaches,
such as ANNs. In Chapter 4, we present the systems considered for our
case studies and the simulations conducted in each case, using the software
OpenDSS and Organon; numerical results from the ANNs predictions are
also presented. Chapter 5 details the demand contracting process adopted by
distributors in Brazil, presents the optimization model employed to generate
the optimal contracts, and compares the results for the demand contracts
obtained from the benchmark software (Organon) with the ones obtained from
the ANNs for some of the borders between the Brazilian transmission system
and the distribution system considered. Finally, relevant conclusions and future
studies are drawn in Chapter 6.
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2
Literature Review

2.1
The power flow problem

The power flow calculation on an electric network consists of determining
the network’s state (voltage magnitude and phase angle in all of the buses),
power flow on the lines, electrical losses on the lines, and total losses on the
feeder. In this type of problem, the system’s modeling is static, and the network
is represented by a set of algebraic equations and inequations. Therefore, the
power flow calculation can be solved using computational methods specifically
developed to solve the set of equations/inequations that constitute the static
model of the network (Grainger and Stevenson Jr., 1994; Monticelli and Garcia,
2015).

There are two primary considerations in developing effective solutions
for the power flow and system loss calculations: formulation of a mathematical
description of components, such as transformers, feeders, shunt elements, and
loads, and the selection of a numerical method (Chen et al., 1991).

The basic power flow equations are obtained from Kirchhoff’s and Ohm’s
Laws, and the inequations correspond to operational constraints of the network
and its components, such as generation limits and capacities of the transmission
lines. In the basic formulation of the problem, for each bus, there are four
associated variables, two of which must be given as an entry, and the other
two must be obtained from the solution (Monticelli and Garcia, 2015):

– Vk: voltage magnitude at bus k;

– θk: voltage phase angle at bus k;

– Pk: liquid injection of active power at bus k (generation− load);

– Qk: liquid injection of reactive power at bus k.

Depending on which variables are known a priori and which are con-
sidered unknown, we can define three types of buses (Monticelli and Garcia,
2015):

– PQ: variables Pk and Qk are given, while Vk and θk must be calculated;

– PV: variables Pk and Vk are given, while Qk and θk must be calculated;

– Vθ (slack bus): variables Vk and θk are given, while Pk and Qk must be
calculated.
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PQ and PV buses are used to represent load and generation buses,
respectively. The slack bus gives the system’s angular reference, and it is used
to balance the power generation and consumption in the network, taking into
account the system’s losses that are unknown before the final solution of the
problem (Monticelli and Garcia, 2015).

The set of equations for the power flow problem is composed by two
equations for each bus, representing Kirchhoff’s first law for the active and
reactive components (Monticelli and Garcia, 2015):

Pk =
∑
m∈Ωk

Pkm(Vk, Vm, θk, θm) (2-1)

Qk +Qsh
k (Vk) =

∑
m∈Ωk

Qkm(Vk, Vm, θk, θm), (2-2)

where:

– k = 1, . . . , N (number of buses in the network);

– Ωk: set of buses connected to bus k;

– Vk, Vm: voltage magnitudes of buses k and m;

– θk, θm: voltage phases of buses k and m;

– Pkm: active power flow at branch k −m;

– Qkm: reactive power flow at branch k −m;

– Qsh
km: component of reactive power injection due to the shunt element at

bus k.

Equations (2-1) and (2-2) can be rewritten as:

Pk = Vk
∑
m∈K

Vm(Gkmcosθkm +Bkmsinθkm) (2-3)

Qk = Vk
∑
m∈K

Vm(Gkmsinθkm −Bkmcosθkm), (2-4)

where K is the set of buses connected to bus k (including bus k), Gkm and
Bkm correspond to the real and imaginary elements of the admittance matrix,
respectively.

For each bus, there are four associated variables (Pk, Qk, Vk and θk).
Since there are N buses in the system, we have 2N equations and 4N variables,
some of which are previously defined, according to the bus category, resulting
in a system of 2N equations and 2N variables unknown. However, the sets of
equations (2-3) and (2-4) can be altered to remove equations referring to the
slack bus since variables P and Q for this bus can be directly obtained from
the calculation of the remaining variables. The resulting system has 2N−2NV θ

dimensions, where NV θ is the number of slack buses in the system (usually,
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there is only one slack bus). We have a similar situation for PV buses since their
reactive power can also be directly obtained from the results of the remaining
variables, leading us to a system of 2N − 2NV θ−NPV dimensions, where NPV

is the number of PV buses. It is important to note that PV and slack buses
present limits for the injection of reactive power that must be respected in the
problem’s solution (Monticelli and Garcia, 2015). Therefore, the power flow
problem usually takes the form of a non-convex problem, with non-convex
constraints (Donnot, 2019).

Different power flow methods are used for determining the steady-state
operation conditions by calculating currents, voltages, and active/reactive
powers (Kahef et al., 2018). Traditionally, the Newton-Raphson and the
fast decoupled power flow solution techniques, and a large number of their
derivatives, were used to solve the power flow problem for “well-behaved”
power systems (Shirmohammadi et al., 1988). Some of these methods will
be presented in more detail in the next Chapter.

According to (Shirmohammadi et al., 1988), the scientific community has
been aware of the shortcomings of those traditional methods when they were
generically implemented and applied to “ill-conditioned” and/or poorly initial-
ized power systems for a few decades. Hence, commercial power flow software
always attempts to modify those algorithms to improve the solution’s robust-
ness. However, the nature of the modifications and the degree of improvement
obtained vary for different methods. The Gauss-Seidel power flow technique,
for example, another traditional power flow method, although very robust, can
be extremely inefficient for solving large power systems.

Distribution networks, for example, due to their wide-ranging resistance
and reactance values and radial structure, fall into that category of “ill-
conditioned” power systems for the traditional power flow methods. Attempts
to use the Newton-Raphson method for solving distribution networks are, in
general, unsuccessful, leading to a divergence in the solution (Shirmohammadi
et al., 1988).

Power flow methods for distribution networks must be able to model,
with sufficient details, some unique features of these systems, such as: radial
or near radial structure; multi-phase, unbalanced, grounded or ungrounded
operation; distributed generation; multi-phase, multi-mode control distribution
equipment; unbalanced distributed loads; a huge number of branches/nodes
(Cheng and Shirmohammadi, 1995).

A detailed representation of a distribution network requires: the three-
phase representation of the network to account for actual load unbalances; the
distributed load representation along the distribution lines; the mathematical
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representation of elements such as voltage regulators, loads, shunt capacitors,
among others, in order to approximate their physical behavior (Shirmoham-
madi et al., 1988; Chen et al., 1991).

Voltage regulators can be three-phase or single-phase and are connected
in the substation and/or to a specified line segment. On the other hand, loads
can be connected at a node (spot loads) or assumed to be uniformly distributed
along a line section (distributed loads). Loads, as well as shunt capacitor
banks, may be three-phase (balanced or unbalanced), connected in wye or
delta configurations, or single-phase, connected line-to-ground or line-to-line.
All loads can be modeled as constant power (PQ), constant impedance (Z), or
constant current (I), while capacitors are modeled as constant susceptance at
nameplate rated kVAr (Kersting, 2001).

The problem of system imbalance has considerable effects on power
systems studies. Although the effects of zero sequence current on protection
relays and negative sequence current on motors are well known by distribution
engineers, other effects such as increasing system loss, decreasing system
capacity, and increasing the inductive coupling between parallel lines or feeders
are sometimes overlooked (Chen et al., 1991).

Based on that, the unbalanced nature of distribution systems requires
multi-phase power flow solutions to handle arbitrary network topologies and
provide accurate results. This need for a detailed analysis of secondary grid sys-
tems located in dense urban areas and the modeling of distribution networks,
including the sub-transmission levels, requires the use of highly efficient and
large-scale system-capable methods (Kocar et al., 2014).

The increasing use of renewable sources is another important factor to
be considered in power flow studies since it adds complexity for the secure
operation of the transmission and distribution grids due to three main reasons:

– since those sources are less predictable, in cases of contingencies, that
may be weather-related, operators must act quickly to protect the
equipment and avoid lines to get overloaded, for example (Donnot et al.,
2017).

– as a result of renewable energy sources’ integration, the power flow in
distribution networks is becoming more challenging, as reverse flows may
occur (Pertl et al., 2016).

– the integration of renewable sources in sub-transmission and distribution
systems has introduced great stochasticity, making load profiles much
harder to be predicted and introducing significant variations in loads
and generations, increasing the number of scenarios to be considered,
while updating generation schedules, for example (Fioretto et al., 2019).
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Therefore, modeling distributed generators (DGs) in distribution power
flow algorithms has become an inevitable task. Depending on the contract and
control status of a generator, it may be operated in one of the following modes
(Cheng and Shirmohammadi, 1995):

– in “parallel operation” with the feeder, i.e., the generator is located near
and designated to supply a large load with fixed real and reactive power
output, resulting in a net effect of a reduced load at a particular location;

– to output power at a specified power factor;

– to output power at a specified terminal voltage.

In the power flow context, generation nodes in the first two cases can
be well represented as PQ nodes, requiring little special treatment in the
algorithm. Generation nodes in the third case, on the other hand, must be
modeled as PV nodes, with special procedures needed to be performed in
order to maintain its voltage magnitude, as well as to monitor its reactive
power capability (Cheng and Shirmohammadi, 1995).

As mentioned, traditional power flow solution methods are not applicable
to distribution systems (Shirmohammadi et al., 1988; Kocar et al., 2014).
Common approaches to address this problem include iterative techniques, such
as the Backward-Forward (BF) method, which does not require a matrix-based
formulation (Kocar et al., 2014). In this method, the backward step estimates
the power flow from the far bus, while the forward step estimates the power
flow from the slack bus (Kahef et al., 2018).

The BF method was initially designed for radial networks and then
extended to meshed networks at the expense of an increased number of
iterations and/or more prominent divergence risks. Although the BF class of
solvers is able to handle the solution in the phase domain and account for the
unbalanced nature of distribution systems, it has topological limitations and
lacks generality (Kocar et al., 2014).

According to (Kocar et al., 2014), another possible solution technique for
the power flow problem in distribution systems is the fixed-point method, in
which the nodal admittance matrix is obtained in the phase domain, and loads
are initially linearized with passive resistance and inductance (RL) devices.
In the consecutive iterations, power mismatches are represented with current
injections populated in the current vector. This approach usually needs more
iterations to converge than Newton’s method, but the advantage is that it
remains efficient since the system nodal admittance matrix is not changed
often. One approach for the fixed-point technique is the Current Injection
Method, which consists of a Newton method describing mismatch equations
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for nodal currents in terms of specified powers and voltages. This method will
be described in more detail in Chapter 3.

The main difficulties in most of the power flow methods presented in the
literature consist of the generalization path to arbitrary device connections
and expandability (Kocar et al., 2014). In order to solve problems caused by
varying demands of electricity, with complex production systems that include
conventional power plants and, more recently, less predictable renewable
sources, operators often recur to different approaches, such as the use of linear
DC approximations for power flow calculations. However, this approach focuses
only on the scenarios considered to be the most pertinent, and the simulations’
fidelity may be compromised (Donnot et al., 2017; Fioretto et al., 2019).

Hence, we conducted searches on the literature to review approaches for
power flow calculations in distribution systems. These searches are described
next.

2.2
Main searches in the literature

The goals of this Literature Review are: analyze power flow methods
for distribution systems; map possible Artificial Intelligence (AI) techniques
to address the previously mentioned challenges of power flow calculations
in distribution networks; study applications of Artificial Neural Networks
(ANNs) in distribution systems, which is the main technique discussed in this
dissertation. In order to do that, three main searches on the Scopus database
were conducted, with target concepts as illustrated in Figure 2.1.

Figure 2.1: Searches conducted on the Scopus database. The Figure illustrates
that the first search was broader than the second one and that the second
search was broader than the third one. This way, we refined the publications
obtained until our main target.
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2.2.1
First Search: Power flow methods for distribution systems

For the first search, the keywords (“power flow*” OR “load flow*”)
AND (“distribution network*” OR “distribution system*” OR “distribution
operation*” OR “distribution planning*”) were applied on the database.
According to (Maçaira et al., 2018), keywords should be broad enough not
to restrict the number of studies and specific enough to return only the studies
related to the topic.

There was no time restriction for the search, and the only exclusion
criteria applied were “Conference Review” documents and the language of
the publications, resulting in 7075 publications written in English. Figure
2.2a presents the most relevant studies on power flow analysis in distribution
systems (References (Baran andWu, 1989; Shirmohammadi et al., 1988; Barker
and Mello, 2000; Kersting, 2001; Cheng and Shirmohammadi, 1995)), while
Figures 2.2b and 2.2c presents the main publication sources and the growth
on the number of publications on the subject through the years, respectively,
according to the data obtained from the biblioshiny application1 (Aria and
Cuccurullo, 2017).

(a) Main publications on the subject.

Figure 2.2: Analysis on the subject of power flow calculations on distribution
systems.

1It’s worth mentioning that, although publications from the year 2020 were obtained in
the search, those works were not considered on the plot of Figure 2.2c, since it deals with
the scientific production of complete years and the search was conducted during the year of
2020.
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(b) Main journals on the subject.

(c) Number of publications on the subject per year.

Figure 2.2: Analysis on the subject of power flow calculations on distribution
systems (Continuation). Data obtained from the biblioshiny application (Aria
and Cuccurullo, 2017).

Figure 2.3 indicates the authors’ most used keywords. For this analysis,
broad sense keywords, common to most of the publications, such as “electric
load flow”, “distribution systems” and “electric power distribution”, for exam-
ple, were removed.

From Figure 2.3, we can observe that the term “distributed power
generation” is the most commonly used by authors in their publications due to
the penetration growth of these “energy resources” in distribution networks.
In recent years, much interest has been focused on the increased amounts of
“renewable energy resources” on power systems. These resources have unique
characteristics due to their seasonality, leading to a maximum generation
potential that varies on different time scales and cannot be perfectly predicted
(Barker and Mello, 2000; Ela et al., 2011).
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Figure 2.3: Most relevant keywords. Data obtained from the biblioshiny
application (Aria and Cuccurullo, 2017).

Among the renewable energy resources, solar and “wind power” are
usually the main generation sources. Wind generation typically complements
solar production by generating more in the early morning and late evening and
less in the middle of the day (CAISO, 2019). However, since many DGs are not
utility-owned, there is no guarantee that their installation’s ideal conditions
will be satisfied. This may adversely impact power system operations if
specific minimum standards for control, installation, and placement are not
maintained, leading to new operational challenges (Barker and Mello, 2000).

Since distribution systems were traditionally operated as radial networks,
common issues associated with DGs’ penetration are related to the reverse
power flows introduced by those units. Despite this power injection, flows must
be kept below the maximum limits on equipment such as distribution lines and
transformers. Throughout the power system, voltage levels must also be kept
within nominal levels at all locations on a network. This is achieved through
“reactive power” management of generators as well as by “voltage control”
devices such as “voltage regulators”, transformer taps, capacitors, and reactors,
for example. Systems must also be able to withstand contingency events
with preventive control actions holding reserves and limiting pre-contingency
flows. This way, they can survive the events, and normal operations may be
completely restored shortly (Barker and Mello, 2000; Ela et al., 2011).

The aforementioned impacts on the operation of distribution systems
are indicative of how the network supervision, by the distributors, will need
to evolve, adopting and/or improving technologies capable of monitoring the
system, providing detailed and high temporal granularity information, in
addition to managing and actively controlling network devices. This evolution
is linked to the concept of “smart power grids” (El-Hawary, 2014). The basis for
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smart grid management is the state observability, i.e., the real-time knowledge
of all the network quantities (branch currents, node voltages, and power flow),
which is usually obtained by load flow algorithms, whose implementation
requires an accurate model of the network and a continuous update of the
input load data (Cataliotti et al., 2019). According to (Ivanov et al., 2014),
smart grids should have at least the following features: two-way communication
(from the consumer to the utility and from the utility to the consumer);
smart metering; equipment automation and automated management; real-time
monitoring and control.

Utilities that encourage DG programs may apply “optimization” tech-
niques to obtain the optimal siting of units to enhance the system’s perfor-
mance (Barker and Mello, 2000). Optimization methods can also be widely
applied in power flow analysis with other purposes, for example: in network
reconfiguration problems that aim to find the optimal load transfer between
feeders or substations in order to reduce system’s losses and balance system’s
loads while considering constraints related to voltage, lines/transformers ca-
pacities and reliability (Baran and Wu, 1989); they allow the achievement of
an optimal reactive (VAR) control in order to improve voltage profiles and
to minimize the system’s power losses, by proper adjustments of VAR vari-
ables, such as shunt capacitors and tap-changing transformers (Ramakrishna
and Rao, 1999); they constitute the common framework to address “optimal
power flow” (OPF) problems (Fioretto et al., 2019; Imen et al., 2015).

OPF problems consist of determining the generators dispatch of minimal
cost that can attend the demand and the system’s physical and engineering
constraints. In (Fioretto et al., 2019), the authors highlight that usually,
generation schedules are updated every five minutes, but, in recent years, the
integration of renewable energy in sub-transmission and distribution networks
is making load profiles much harder to be predicted and is introducing
significant variations in load and generation. This uncertainty leads operators
to adjust generators set-points with increasing frequency to meet the demand
and guarantee a safe operation of the system. However, the resolution frequency
to solve OPFs is limited by their computational complexity, causing operators
to use OPF approximations, such as the linear DC model, leading to solutions
that may be sub-optimal, which can cause economic losses or may fail to satisfy
the physical and engineering constraints (Fioretto et al., 2019).

To address those challenges, system operators may require more sophis-
ticated methods for balancing tradeoffs between nominal performance and op-
erational risks since penetration levels of renewable energy sources continue
increasing to substantial fractions of the total supplied power, both in distri-
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bution and transmission networks (Guo et al., 2019). In (Guo et al., 2019), a
stochastic OPF model that aims to balance the operational costs and the total
CVaR values of voltage magnitude constraints is proposed; the model considers
an operational cost that captures electricity purchased by customers, excessive
solar energy fed back to the utility, reactive power compensation costs and
penalties for active power curtailment.

AI methods have also been applied to the OPF problem (Fioretto
et al., 2019; Imen et al., 2015). The methodology proposed in (Fioretto
et al., 2019), for example, approximates OPFs using Deep Neural Networks
(DNNs). Since the resulting generator’s set-points must satisfy the physical
and engineering constraints that regulate power flows, and these constraints
introduce significant difficulties for Machine Learning-based approaches, the
proposed methodology exploits the problem constraints using a Lagrangian
dual method.

The work presented in (Chatzos et al., 2020) demonstrates, for the first
time, that DNN architectures are able to provide high-fidelity approximations
for OPF problems with thousands of buses and transmission lines, expanding
the results presented in (Fioretto et al., 2019). The proposed framework
was evaluated on real case studies from the French transmission system and
produced accurate AC-OPF approximations in the order of milliseconds.

Therefore, AI techniques constitute a modern approach to power flow
analysis due to their fast calculation time (Fikri et al., 2018; Imen et al.,
2015). To illustrate this, we conducted a second search on the Scopus database,
described next.

2.2.2
Second Search: Applications of AI methods for power flow calculations in
distribution systems

For the second search, we added the terms (“neural network*” OR
“artificial neural network*” OR “deep learning” OR “machine learning”) to
the keywords from the first search. The same exclusion criteria were applied,
resulting in 113 publications. Figure 2.4 indicates the growth in the number
of annual publications obtained from the search of the mentioned keywords.
It is worth noting that the first study was published in 1990 and that a more
expressive growth in the number of publications started in the year 2016, with
an increase of about 44% in the annual scientific production from 2018 to
20192.

2Once again, publications from the year 2020 were not considered on the plot of Figure
2.4, since it deals with the scientific production of complete years and the search was
conducted during the year of 2020.
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Figure 2.4: Number of publications on the subject per year. Data obtained
from the biblioshiny application (Aria and Cuccurullo, 2017).

Figure 2.5 indicates the authors’ most used keywords for this new search
of publications. Once again, broad sense keywords, common to most of the
publications, such as “electric load flow”, “neural networks” and “artificial
intelligence”, for example, were removed from the analysis.

Besides some relevant words already obtained in the first search, new
keywords were obtained, such as “Learning Systems”, “Genetic algorithms”,
“Electric losses” and “Mathematical models”. The term “Learning Systems”
refers to the three key categories of ML algorithms, described below (Misilmani
and Naous, 2019):

– Supervised learning: what a correct output looks like is already known.
After training the learning algorithm on a given data set, the algorithm
generalizes to give accurate predictions to all possible inputs.

– Unsupervised learning: what the results should look like is unknown; the
algorithm derives a structure from the data after identifying similarities
in the inputs.

– Reinforcement learning: the machine receives no labeled data set. In-
stead, information is collected after interacting with the environment
through different actions. The machine is rewarded after each action;
hence, its objective is to maximize this expected average reward, where
the action would become optimal.

Among the “Mathematical models” proposed by the publications, the
great relevance of the keyword “Optimization” justifies the importance of
the term “Genetic algorithms” in the new search. Although both ANNs
and Genetic Algorithms (GAs) have biological motivations, they are very
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Figure 2.5: Most relevant keywords. Data obtained from the biblioshiny
application (Aria and Cuccurullo, 2017).

different methods that aim to achieve distinct objectives: while ANNs can
be described as computational structures inspired by the study of biological
neural processing, with a learning process based on the training of a dataset
and the proposal of an alternative model to describe the data (Fikri et al.,
2018), GAs constitute optimization methods in which multiple search points
explore optimal solution simultaneously and independently (Matsuno et al.,
2003).

Also, “electric losses” in distribution systems are important economic
indicators for the assessment of power supply companies since they usually
appraise operating efficiency by the amount of real power loss over the whole
power system. However, conventional loss analysis, using detailed system
modeling, is difficult and impractical to perform due to the vast amount of
data required. Therefore, Machine Learning (ML) techniques, a large subset of
AI techniques, are being proposed to obtain distribution systems losses more
accurately and with less effort (Hsu et al., 1995; Misilmani and Naous, 2019).

In electrical networks, bus voltage levels, load, generation, and branch
power flows are interdependent variables, consisting in a problem that can
be solved using the approximation capabilities of ANNs, popular tools from
the ML and Computational Intelligence communities, widely and successfully
employed in many fields (Cataliotti et al., 2019; Ivanov et al., 2014). In power
flow analysis, ANNs play an important role due to some convenient features,
such as (Fikri et al., 2018):

– they are extremely useful for solving nonlinear problems;
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– the method is not algorithmic and does not require any prior knowledge
of the variables related to the problem, such as P,Q, V , and θ. Therefore,
it is not necessary to make the approximations needed by traditional
numerical methods;

– they can handle situations of incomplete information.

Therefore, due to the importance of this method among ML techniques
for power flow analysis and, since it is the focus of this dissertation, a third
search on the Scopus database was conducted, as described below.

2.2.3
Third Search: ANNs approaches for power flow calculations in distribution
systems

For the third search, only the subset (“neural network*” OR “artificial
neural network*”) of the keywords from the second search was selected,
resulting in 93 publications. This last search aimed to obtain the most
important publications (References Ramakrishna and Rao (1999); Guo et al.
(2019); Cataliotti et al. (2019); Hsu et al. (1995); Ivanov et al. (2014)) and
publications sources on the subject, as depicted in Figures 2.6a and 2.6b,
respectively, according to the data obtained from the biblioshiny application
(Aria and Cuccurullo, 2017).

(a) Main publications on the subject.

Figure 2.6: Analysis on the subject of ANNs application for power flow
calculations on distribution systems.
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(b) Main journals on the subject.

Figure 2.6: Analysis on the subject of ANNs application for power flow
calculations on distribution systems (Continuation). Data obtained from the
biblioshiny application (Aria and Cuccurullo, 2017).

According to the literature, there are many different applications for the
ANN methodology in the power flow analysis. Hsu et al. (1995) mention that,
until 1995, the ANNs applications in power systems could be categorized into
three main areas: regression, classification, and combinatorial optimization.
However, new approaches for ANNs applications in power systems were
developed through the years. For example, in (Donnot et al., 2017), ANNs were
used to approximate power flows in the system’s lines, and ML techniques were
developed to suggest corrective actions to operators, preventing violations of
thermal limits in transmission lines. In (Cataliotti et al., 2019), the authors
propose a method that uses historical data to train ANNs to obtain load
estimations in unavailable nodes. By using the load estimations and real
available load measurements in other substations, power flows in the whole
medium-voltage network could be calculated.

The establishment of models for electric loss calculations is another pos-
sible application for ANNs, overcoming the problem that traditional meth-
ods for line loss calculations depend on the grid structure and need to solve
a large number of loop equations. In (Kahef et al., 2018), feed-forward net-
works were used to estimate losses in a system’s lines. Another example is
the implementation used in (Chao et al., 2017), where backpropagation neural
networks were used to establish a line loss calculation model. In (Leal et al.,
2006), a methodology based on ANNs was proposed to evaluate losses for each
segment of distribution systems (secondary and primary networks, distribu-
tion transformers, and High-Voltage/Medium-Voltage transformers). In (Hsu
et al., 1995), the authors highlight that primary and secondary conductors,
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along with distribution transformers, typically contribute most to power losses
in a distribution system. Besides that, variations in feeder loads and phase
voltage imbalance also introduce changes in load demand and system loss. An
ANN method is proposed for fast pattern recognition and regression of the
feeder loss model to solve feeder loss calculations more accurately and with
less effort.

Ramakrishna and Rao (1999) discuss the joint control of switched capac-
itors and tap-changing transformers to minimize losses while satisfying voltage
constraints. The work highlights that classical techniques of Volt/VAR control
in distribution systems, which include linear and nonlinear programming, are
not adequate for online applications since they are inflexible with changing
conditions and do not include the operator’s decision-making logic. To over-
come these problems, an ANN approach was proposed to solve the VAR control
and design problems.

In (Pertl et al., 2016; Fikri et al., 2018; Ivanov et al., 2014), the
use of an ANN eliminates the need to model the entire power system and
obtain the admittance matrix to estimate bus voltages. In (Ivanov et al.,
2014), an approach using Multilayer Perceptron ANN to estimate bus voltage
magnitudes and angles, based on bus power injection and branch power flow
measurements, is proposed. The ANN voltage estimator method does not
require network data knowledge and only uses bus and branch measurements.
According to the results, the ANN was able to learn the pattern of bus
voltages variations with the change of hourly loads, thus replacing an iterative
calculation with a more straightforward calculation. Also, in (Pertl et al., 2016),
photovoltaic (PV) generations were inserted in the power system at different
levels, and it was possible to observe that the estimation error increased when
the PV generations reached their highest levels of penetration since those levels
were not considered in the training set of the ANN.

As mentioned, the increase of uncertainties in power systems due to
the integration of intermittent renewable resources has produced significant
impacts on the grids’ operation, planning, and control. An important tool to
mitigate those impacts by quantifying how the randomness of node injection
power propagates to the bus voltages, power flows, and other system operating
states is the Probabilistic Power Flow (PPF). The PPF method can address
random factors, such as renewable energy generation, load fluctuations, and
topology features, consisting of a useful tool for analyzing power systems
uncertainties (Yang et al., 2020; Xiang et al., 2020a,b).

The most common approach for the PPF problem is the Monte Carlo
simulation (MCS). Although the MCS method is very accurate, it is time-
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consuming since it requires solving the nonlinear power flow equations for a
large number of samples. In order to improve the calculation speed of the
simulation method, different solutions have been proposed in the literature,
such as the use of the DC approximation, which improves the calculating
speed but sacrifices the accuracy of the solutions, and the parallel computing
based method that is able to calculate PPF accurately and rapidly, but is
highly dependent on computational resources and, therefore, is not practical
to be implemented in every power company (Xiang et al., 2020a,b). Since PPF
problems subjects a large number of samples to the same computational task
(the power flow calculation), one possible approach is to formulate them as
ML problems (Yang et al., 2020). References (Yang et al., 2020; Xiang et al.,
2020a,b) propose using DNNs to approximate and speed up the power flow
calculations in PPF problems.

In (Yang et al., 2020), the authors propose an approach in which a DNN
is used to approximate the power flow calculation, and its training process
consists of three main steps: first of all, the branch flows are added into the
objective function of the DNN as a penalty term, improving the accuracy of
the approximations; second, the training speed is accelerated by removing the
impact on voltage magnitudes and the relationship between reactive branch
powers and phase angles, according to the physical characteristics of the
transmission grid; at last, an improved initialization method for the DNN is
derived to further improve the convergence efficiency.

One difficulty described in (Yang et al., 2020; Xiang et al., 2020b) is
that the structure of the DNN should match the power system’s size. However,
with the development of renewable energy and power demand, the power grid’s
topology or the distribution of renewable resources may change rapidly, with
new buses or branches being added to the grid. Hence, the original trained
DNN may not apply to the extended system. Transfer Learning techniques
may be adopted to address this issue and improve the scalability of DNNs for
extended systems. This method applies useful knowledge from related domains
to help the training of the target domains. Since the new power system is
extended from the original one, power flow features are highly similar and,
hence, the parameters of the original trained-DNN comprise useful knowledge
for the extended system and can be used as an initialization point to train a
new DNN, as it was proposed in (Xiang et al., 2020a,b).

In (Xiang et al., 2020a), two main aspects are investigated to improve
the DNN performance: the construction of the feature vector that effectively
characterizes the renewable energy, load, and topology and the knowledge
transfer of DNN parameters to improve the training efficiency of the DNN
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for evolutionary scenarios.
In (Xiang et al., 2020b), DNNs are applied to obtain power flow results,

such as voltage amplitude and angle of buses and also active and reactive power
flows in each branch, for different simulation cases. The networks’ topology is
altered from one simulation case to the other, and the authors propose using the
Transfer Learning technique to train the DNNs. Two main features are studied
in the application of the technique: parameters of input and output layers are
transferred to initialize parts of parameters in the new DNN according to the
variable with which they are connected; the remaining parameters of input
and output layers are initialized based on the non-parametric estimation.

The use of ANNs in the power flow analysis has also been subject to
thesis and dissertations. For example, in (Donnot, 2019) the methodology was
applied to offer, in real-time, a set of actions that dispatchers could choose from
in order to resolve or prevent problems caused by disturbances on the grid. At
first, an artificial data set was built to perform some controlled experiments
to validate the developed methodology. The main model developed consists
of adapting the architecture of a neural network depending on a structural
vector τ , representing the grid’s topology, possible contingencies z, and the
operator’s decision π. This way of encoding the topology forces the ANN to
learn pertinent representations, allowing it to generalize to unseen structural
vectors τ . The work demonstrated that ML could allow Transmission System
Operators (TSOs) to predict flows accurately on snapshots, even in unseen
cases, at least in controlled experiments.

Recent developments in ML have been driven not only by the develop-
ment of new learning algorithms and theory but also by the ongoing explosion
in the availability of online data and low-cost computation. ML has progressed
dramatically over the past two decades, evolving from academic theory to a
practical technology in widespread commercial use. The past decade has seen
a rapid increase in networked and mobile computing systems’ ability to gather
and transport large amounts of data. This phenomenon is often referred to as
“Big Data”. This vast amount of data makes it essential to develop scalable
procedures that blend computational and statistical considerations, requiring
ML solutions to the problem of obtaining useful insights, predictions, and de-
cisions from the data sets (Jordan and Mitchell, 2015).

In this work, we propose a computational tool based on ANNs to esti-
mate both the system’s active technical losses and line flows. The predictions’
accuracy is checked against traditional power flow methods, computed by com-
mercial software such as Organon, developed by HPPA, and OpenDSS, devel-
oped by EPRI. Using this method, we were able to accurately compute losses
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in distribution systems and calculate line flows much faster than traditional
methods. From a methodological perspective, the proposed approach differs
from most of the mentioned literature due to the fact that, since topology
features are difficult to be obtained for distribution systems, the only inputs
applied to the ANNs were the active loads and generations of the system,
leading to an advantage to increase the scope of application of the proposed
method.

Another difference is that, although Matlab is the mainly used program-
ming language in this area, we used the Julia language to implement the pro-
posed methodology due to some beneficial features when dealing with a large
amount of data, for example: Julia is faster than Matlab; it has automatic
memory management, and it has its own native ML libraries that are entirely
written in Julia, so they can easily be modified by the end-user if needed.

Besides that, an additional innovation of the present work is the appli-
cation of the results produced by the ANN methodology to the obtainment
of optimal demand contracts for distribution systems at the borders with the
transmission system.
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3
Methodologies

In Chapter 2, we showed that the power flow problem corresponds to a set
of equations, for each bus of the system, representing Kirchhoff’s first law. As
depicted by equations (2-1) and (2-2), equations (2-3) and (2-4) are dependent
of the unknown variables Vk, Vm, θk and θm. However, equations (2-3) and (2-
4) are complicated nonlinear equations and it is not possible to obtain an
exact analytical solution for them. Therefore, we must use an approximation
technique that allows us to obtain a sufficiently accurate solution.

In this Chapter, we will present two approaches to solve the power flow
calculation: the first one corresponds to classical iterative methods, while the
second approach uses ML techniques to address the power flow problem.

3.1
Classical Iterative Methods

The term “iterative method” refers to a wide range of techniques that
use successive approximations to obtain more accurate solutions to a system
of equations at each step. In this section, we will focus on a class of iterative
methods that presents iteration-dependent coefficients (nonstationary iterative
methods), more specifically, Newton’s method and the Current Injection
Method (Barret et al., 1994).

3.1.1
Newton’s Method

Among iterative methods, Newton’s method is one of the most well-
known. Generally, the method can be applied to find the solution for a equation
f(x) = 0, based on the following steps (Monticelli and Garcia, 2015):

1. Arbitrate an initial condition (xi = x0) and fix i = 0;

2. Calculate f(xi) and check the convergence. If the absolute value |f(xi)|
is equal to or smaller than a given tolerance tol, i.e., if |f(xi)| ≤ tol the
procedure may be finished.

3. Linearize the function around (f(xi), xi) and equal the function to zero
in order to establish the pace ∆xi = xi+1 − xi and the new point xi+1.

4. Set i = i+ 1 and return to Step 2.
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We can represent the unknown variables of the power flow problem in a
vectorial form, given by:

x =
 θ
V

 ,
where θ and V corresponds to voltages angles and magnitudes, respectively.
Hence, our problem is to obtain the vector x of unknown variables.

According to (Monticelli and Garcia, 2015), a subset of equations (2-
3) and (2-4), corresponding to the buses where the values of P and V are
previously known, can be generally represented by a function f(x), where x is
the aforementioned vector of unknown variables, given by:

f(x) =

∆Pk = P spe
k − Pk(x) , ∀k ∈ [ΩPQ,ΩPV ]

∆Qk = Qspe
k −Qk(x) , ∀k ∈ [ΩPQ] ,

(3-1)

where spe represents specified power values (already known at bus k),
ΩPQ and ΩPV corresponds to the sets of PQ and PV buses on the system,
respectively. We can apply Newton’s method at function f(x) by expanding
the function in a Taylor series around an initial point xi and discarding the
high order terms obtained by the expansion:

f(x) ≈ f(xi) +
[
∂f(xi)
∂x

]
∆xi (3-2)

By making f(x) = 0, we can obtain the correction term ∆xi through the
solution of the system (3-3):[

∂f(xi)
∂x

]
∆xi = −f(xi) (3-3)

For iteration i, we can define power mismatches at bus k as:

∆P (θi, Vi) = P spe
k − Pk(θi, Vi) (3-4)

∆Q(θi, Vi) = Qspe
k −Qk(θi, Vi), (3-5)

Since we are dealing with vectorial functions, we can use the Jacobian matrix

J =
H N

M L

 ,
corresponding to the first order partial derivatives of the vectorial function
f(x), and equation (3-3) can be rewritten as:H N

M L

∆θi
∆Vi

 =
∆P (θi, Vi)

∆Q(θi, Vi)

 , (3-6)
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where H = ∂P/∂θ, L = ∂Q/∂V , M = ∂Q/∂θ and N = ∂P/∂V and, since the
specified values P spe and Qspe are constant, their partial derivatives are null.

The components of the Jacobian submatrixes H,N,M , and L are given
by (Monticelli and Garcia, 2015):

H =

Hkm = ∂Pk

∂θm
= VkVm(Gkmsinθkm −Bkmcosθkm)

Hkk = ∂Pk

∂θk
= −V 2

k Bkk − Vk
∑
m∈K Vm(Gkmsinθkm −Bkmcosθkm)

N =

Nkm = ∂Pk

∂Vm
= Vk(Gkmcosθkm +Bkmsinθkm)

Nkk = ∂Pk

∂Vk
= VkGkk +∑

m∈K Vm(Gkmcosθkm +Bkmsinθkm)

M =

Mkm = ∂Qk

∂θm
= −VkVm(Gkmcosθkm +Bkmsinθkm)

Mkk = ∂Qk

∂θk
= −V 2

k Gkk + Vk
∑
m∈K Vm(Gkmcosθkm +Bkmsinθkm)

L =

Lkm = ∂Qk

∂Vm
= Vk(Gkmsinθkm −Bkmcosθkm)

Lkk = ∂Qk

∂Vk
= −VkBkk +∑

m∈K Vm(Gkmsinθkm −Bkmcosθkm)

Elements Hkk, Nkk,Mkk, and Lkk can be rewritten according to the active
and reactive power injections on bus k. Hence,

Hkk = −Qk − V 2
k Bkk, (3-7)

Nkk = V −1
k (Pk + V 2

k Gkk), (3-8)

Mkk = Pk − V 2
k Gkk, (3-9)

Lkk = V −1
k (Qk − V 2

k Bkk) (3-10)
According to the expressions for the submatrixes H,N,M and L, if

Ykm = Gkm + jBkm is null, then the elements Hkm, Nkm,Mkm and Lkm are
also null. Therefore, H,N,M and L have the same sparsity feature than the
admittance matrix Y .

We can summarize the iterative process of Newton’s method for power
flow solution by the procedure described in Algortihm 1. Also, Figure 3.1
illustrates the process described.
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Algorithm 1 Newton’s method for power flow solution
1: Set initial values for V0 and θ0 (i = 0).
2: Calculate power mismatches ∆P (θi, Vi) and ∆Q(θi, Vi).
3: Convergence test: if all the absolute values of the calculated power mis-

matches are smaller than a given tolerance, the process can be ended, and
we can move to the last step; otherwise, we must go to step 4.

4: Obtain the Jacobian matrix df/dx for (θi, Vi).
5: Calculate the corrections ∆θi and ∆Vi and the new state

θi+1 = θi + ∆θi

Vi+1 = Vi + ∆Vi
6: Make i = i+1 and test the convergence of the solution. In case the solution

converges, follow to the next step; otherwise, return to step 2.
7: Calculate the remaining unknown variables of the problem.

Figure 3.1: Newton’s method block diagram for power flow solution.
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This method is adopted by some commercial power flow software, such
as Organon. However, as mentioned in Chapter 2, Newton’s method is not the
most appropriate technique for power flow calculations in distribution systems
due to their unbalanced nature. Hence, methods that are able to provide multi-
phase power flow solutions can better address this kind of problem. As an
example, we present, in the next section, the Current Injection Method.

3.1.2
Current Injection Method

As mentioned in Chapter 2, the most traditional power flow method for
distribution systems is the BF method. However, this technique was initially
designed for radial networks and later adapted to meshed networks due to the
expansion of DGs, and thus has topological limitations. Therefore, we decided
to use the Current Injection Method (CIM) as our benchmark for power flow
calculations in distribution systems. Another reason that motivated this choice
is that CIM is already adopted by commercial power flow software, such as the
Open Distribution System Simulator (OpenDSS), which allows the user to
solve three-phase power flows.

In traditional power flow calculations for distribution systems, all buses,
except for the slack bus, are modeled as PQ buses (Liu et al., 2016). However,
power conversion (PC) elements, such as loads, DGs, and energy storages,
for example, modeled as constant power (PQ) elements, constitute nonlinear
components on the system that require special treatment before the power flow
calculations are initialized (Rocha and Radatz, 2018).

The method models the power system based on nodal admittances: each
linear internal element of the system, such as voltage regulators and capacitors,
for example, has its own primitive admittance but, in order to solve the
entire system, we must obtain the system’s admittance matrix (Y system) that
corresponds to a sparse matrix composed by the primitive admittances of the
elements (Corrêa, 2020).

However, PC elements can be modeled as current injections, depending
on the voltages at each bus. For example, suppose a non-linear single-phase
load connected to a distribution system at node 1 of Figure 3.2. The current
flowing through this load is non-linear and can be represented as a function of
the voltage applied on its terminals, i.e., İterm = f(V̇1). Hence, current İterm
must not be considered as the current injected into the network (Rocha and
Radatz, 2018; Corrêa, 2020).

Power flow methods may address this non-linearity through the consid-
eration of a compensation current. Hence, to initialize the power flow calcu-
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Figure 3.2: Non-linear single-phase load. Source: (Rocha and Radatz, 2018).

lations, a single-phase short-circuit is applied to the load and DG buses; PC
elements are remodeled as a Norton’s equivalent circuit, as depicted by Figure
3.3, composed by a constant nodal admittance Y linear, and a compensation
current source İcomp. Y linear is included in the system’s admittance matrix
Y system and represents the linear component of the load, while İcomp represents
the nonlinear component of the load (Rocha and Radatz, 2018; Barouche,
2017).

Figure 3.3: Non-linear single-phase load represented by a Norton’s equivalent.
Source: (Rocha and Radatz, 2018).

Therefore, the load’s linear component is treated as a passive component
of the network and the resulting injected current İinj on a bus can be obtained
by the vectorial sum of the original current İterm and the compensation current
İcomp on the bus (Rocha and Radatz, 2018):

İinj = İterm + İcomp (3-11)
Current İterm is responsible for the supply of the bus load and can be
determined by the load’s active and reactive components, i.e., it has a constant
value, while current İcomp can be mathematically obtained by:
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İcomp = (V̇1 × Y linear)− İterm (3-12)
Once the system is completely modeled, we can move to the power flow

solution. In the Current Injection Method, the nodal voltages are considered
unknown variables (Barouche, 2017). Therefore, the first step is to obtain an
initial solution to the three phases of the system’s voltages (magnitude and
phase angle). To do that, we can consider that, initially, İcomp = 0 for all PC
elements, obtaining a linear system. This initial operating point is, usually,
close to the final solution, which is essential for the convergence of the method
(Corrêa, 2020).

By making İcomp = 0 and by calculating İterm according to the bus active
and reactive loads, we can obtain the value of İinj, according to equation (3-
11), and, hence, calculate the nodal voltage V̇nodal by (Rocha and Radatz, 2018;
Corrêa, 2020):

V̇nodal = [Y system]−1 × İinj (3-13)
After obtaining the initial voltage values, we can initiate the first iteration to
calculate the compensation currents of PC elements, through equation (3-12),
and, hence, the injected currents, through equation (3-11) and the new voltage
values, according to equation (3-13).

With the new voltage values obtained, we can calculate the difference
between this new result (voltages at iteration i) and the previous one (voltages
at iteration i− 1) by making:

∆V = |Vi−1| − |Vi| (3-14)
If the calculated value for ∆V is greater than a given tolerance, we must
continue the iterative process, adjusting the compensation current and the
nodal voltage values; otherwise, the process has converged, and we can stop
the iterations (Barouche, 2017).

Altogether, there are five main steps on the iterative process of the Cur-
rent Injection Method (Rocha and Radatz, 2018; Barouche, 2017), described
in Algorithm 2.
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Algorithm 2 Current Injection Method
1: Obtain Norton’s equivalent for all PC elements to model the entire system

and calculate the system’s admittance matrix Y system. Calculate constant
currents İterm, according to the bus loads.

2: Initial guess: an initial value for the system’s voltages must be considered.
A good initial guess consists of a direct solution of the nodal admittance
matrix Y system, considering that the compensation current İcomp is null for
all the PC elements on the system, i.e., only constant currents must be
initially considered.

3: Calculation of a vector İinj of injected currents.
4: Once the injected current vector was obtained on the previous step, it is

possible to obtain a new solution for the nodal voltages vector V̇nodal, given
by:

V̇nodal = [Y system]−1 × İinj
5: Convergence test: ∆V = |Vi−1| − |Vi| < tol.

If the test fails, the compensation current İcomp must be updated for each
PC element, according to:

İcomp = (V̇1 × Y linear)− İterm,

and we must return to step 3. Otherwise, the algorithm has converged and
we can stop the iterations.

Figure 3.4 illustrates the aforementioned process.
From the main features of the Current Injection Method, we can highlight

that (Barouche, 2017):

– the distribution system’s admittance matrix is not modified at each
iteration, which provides a great computational efficiency;

– the algorithm for the power flow calculation is straightforward and does
not rely on the construction and inversion of the Jacobian matrix, like
Newton’s method;

– the premise of calculating nodal voltages for iteration i = 0, considering
an open circuit, ensures that the voltage values at this iteration are close
to the numerical solution.

Despite the presented advantages of the Current Injection Method,
the need for many topology features constitutes a difficulty for distribution
systems, as depicted in Chapter 2. This obstacle motivated us to pursue
different approaches for dealing with power flow calculations in distribution
networks. As mentioned in the literature review, ML techniques may represent
an adequate path to address this problem.
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Figure 3.4: Current Injection Method block diagram for power flow solution.

3.2
ML Techniques: Artificial Neural Networks

As mentioned in Chapter 2, with the latest advances in Big Data
availability, software engineering capability, and affordable high computing
power, AI advancement has entered a new stage, in which major research
branches include ML, a category of research and algorithms focused on finding
patterns in data and using those patterns to make predictions. By using ML
techniques to analyze and learn large amounts of existing data, computers can
make predictions and assist in the user’s decision-making process. Therefore,
the goal of ML is to find the optimal mapping between input and output
variables (Misilmani and Naous, 2019; Cheng and Yu, 2019).

According to (Cheng and Yu, 2019), common ML frameworks include
TensorFlow, Caffe, Keras, CNTK, Torch7, Theano, and Deeplearning4J. How-
ever, for our power flow studies, we used the Julia Machine Learning library
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Flux, released in 2017, due to the following main reasons: while typical ML
frameworks are written in many hundreds of thousands of lines of C++, Flux
is only a thousand lines of straightforward pure-Julia code; it provides a single,
intuitive way to define models, with possible incorporation of different Julia li-
braries, making it easier to build complex data processing pipelines; it contains
many useful built-in tools, but also allows the users to create their own func-
tions, benefiting from the main advantages of the Julia language, mentioned
in Chapter 2, when needed (Innes et al., 2018; Innes, 2018).

ML techniques are based on two main goals: learning (training) and
generalization. In order to do that, a data set is usually split into 2 different
sets (Donnot, 2019):

– Training set: contains the data used to compute gradients and find the
optimal parameters of a model.

– Test set: contains data never seen during the training procedure.
Therefore, these data are not used to find the optimal parameters. This
set is used to report final errors on ML algorithms.

As mentioned in Chapter 2, ANNs constitute the main ML technique to address
the power flow calculation problem, and, hence, they will be adopted as our
benchmark.

ANNs are based on the elementary neuron, which is a mathematical
model of the biological neuron. In the same way in which biological neurons,
connected in neural tissues, receive stimuli, process the information according
to their function, and then send a response back to the brain, artificial neurons
compute an output value y, processed from an input value x, according to their
processing function (Ivanov et al., 2014).

ANNs can be described as architectures composed of a single layer or
a sequence of layers, each taking as inputs the results of the previous layers
(Fioretto et al., 2019). When the ANN has only one layer, it is referred to as a
single-layer network or perceptron and, in this case, a set of inputs is directly
mapped to an output by the use of a generalized variation of a linear function.
On the other hand, in multi-layer ANNs, the neurons are arranged in a layered
fashion, in which a group of hidden layers separates the input and output layers
(Aggarwal, 2018).

According to (Xiang et al., 2020a), deep models with multi-hidden layers
have shown a stronger ability to extract complex features than shallow models.
They can be generally categorized into three types: convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and fully-connected deep
neural networks (also referred as deep neural networks (DNNs) for simplicity).
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CNN is the go-to method for addressing image data; RNN is suitable to address
sequence data, like speech data; DNN is suitable for addressing conventional
one-dimensional data. Hence, DNNs are suitable to address the power flow
calculation problem and will be the focus of our study.

Among DNNs, the most used type is the Multilayer Perceptron (MLP),
simple architectures in which the neurons are arranged in the hidden and the
output layers. It is common to employ two hidden layers, or even three, but,
usually, no more than that. While there is no communication between neurons
of the same layer, adjacent layers are fully interconnected, and each neuron-to-
neuron link is associated with a weight. For example, suppose we have an MLP
with a single hidden layer, k inputs, and n outputs, as illustrated in Figure 3.5.
By setting the first index referring to the link’s “beginning” and the second to
its “end”, we can denote the weight of the link from the j−th hidden neuron
to the i−th output neuron as wji, and the weight of the link from the k−th
attribute to the j−th hidden neuron as wkj (Fioretto et al., 2019; Ivanov et al.,
2014; Kubat, 2017).

Figure 3.5: Multilayer Perceptron (MLP) architecture, with one hidden layer.
Source: Adapted from (Kubat, 2017).

Hence, the input values xk are multiplied by the weights associated
with the links; the j−th hidden neuron receives, as inputs, the weighted
sum ∑

k wkjxk and subjects this sum to an activation function f , which is
often non-linear, obtaining f(∑k wkjxk). The i−th output neuron then receives
the previous value, weights it according to wji and, again, subjects it to
an activation function, obtaining the i−th output signal. This process of
propagating the attribute values from the network’s input to its output is
called feed-forward propagation. In essence, the two-layer MLP of Figure 3.5
calculates the following formula to obtain the output signals (Kubat, 2017):
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yi = f(
∑
j

wjif(
∑
k

wkjxk)) (3-15)

The input and output layers’ sizes are determined by the number of input
and output values that describe the problem, while the number of neurons
from the hidden layers is user-defined and problem-dependent (Ivanov et al.,
2014). The structure of the hidden layer not only reflects the complexity of the
mapping relationship between the input and the output layers but also affects
the network convergence characteristics. There is no unique rule to determine
the hidden layer structure for different problems (Hsu et al., 1995).

Activation functions are applied element-wise to the hidden units of an
ANN, allowing the network to represent non-linear mappings between inputs
and outputs. According to (Donnot, 2019), the most frequently used activation
functions are the sigmoid and the Rectified Linear Unit (ReLU) functions. The
sigmoid function, defined as:

σ(x) = 1
1 + e−x

, (3-16)
was the most common non-linear function applied on hidden units of neural
networks and, nowadays, has been replaced, in many applications, by the ReLU
function, given by:

ReLU(x) = max(0, x) (3-17)
The ReLU function has a variation, named Leaky ReLU, that is also commonly
used and it is given by:

LeakyReLU(x) = max(0.1x, x) (3-18)
Figure 3.6 illustrates those activation functions:

Figure 3.6: Most commonly used activation functions. Source: (Jadon, 2018).

According to (Hsu et al., 1995), key factors that strongly affect the
outputs y of an ANN should be adopted as variable signals for the input layer
x. When solving an approximation problem, the learning process aims to find
the optimal weights so that for any input x, the output of the network will be
an approximation, as close as possible, to the exact value of the corresponding
f(x) (Ivanov et al., 2014).
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To improve the training efficiency of ANNs, the input and output data
should be preprocessed to eliminate numerical problems and the adverse
influence of outlier samples in the training process (Yang et al., 2020). It is
noted that the input of the samples should be normalized, whereas the output
of the ANN should be denormalized to obtain the power flow solutions. The
min-max normalization method uses the minimum and maximum values of
samples for normalization:

xnorm = x− xmin
xmax − xmin

, (3-19)

where xnorm is the sample value after normalization; x is the sample value that
needs to be normalized; xmin is the minimum value of samples, and xmax is the
maximum value of samples. The min-max normalization maps the data to the
range of [0, 1]. Denormalization is the reverse process of normalization (Xiang
et al., 2020a).

The optimization of the weights during the training process can be
achieved, for example, through the minimization of a Mean Square Error
(MSE) cost computed over a batch of past input-output observations. Specif-
ically, we have a training set Z = {z1, . . . , zn}, where the element zi is an
input-output pair (xi, yi), measured at some time i in the past, and n is the
total number of such pairs (Cataliotti et al., 2019; Yang et al., 2020). The MSE
is defined using the differences between the elements of the output vector and
the target value (Kubat, 2017):

MSE = 1
n

n∑
i=1

(ti − yi)2 (3-20)

When calculating the network’s MSE, we have to establish, for each output
neuron, the difference between its output (yi) and the corresponding element
of the target vector (ti). It is worth mentioning that the minimization objective
function (in the example, the MSE function) is also called loss function and
that different loss functions can be adopted. The choice of the loss function is
critical in defining the outputs in a sensitive way to the application (Aggarwal,
2018).

In the beginning, the weights are initialized to small random numbers.
After this, the training examples are presented, one by one, and each of them
is forward-propagated to the network’s output. The discrepancy between this
output and the example’s target vector then tells us how to modify the weights.
After the weight modification, the next example is presented. When the last
training example has been reached, one epoch has been completed. In MLPs,
the number of epochs needed for successful training can be thousands, tens of
thousands, or even more (Kubat, 2017).

DBD
PUC-Rio - Certificação Digital Nº 1821583/CA



Chapter 3. Methodologies 49

In Figure 3.7, the vertical axis represents the MSE, expressed as a
function of the network’s weights, plotted along the horizontal axes. For
graphical convenience, it is assumed that there are only two weights. The
“valleys” in the error function represent the function’s local minima. The
deepest of them is the global minimum. Ideally, the training procedure should
be able to obtain the set of weights corresponding to the global minimum
(Kubat, 2017).

Figure 3.7: MSE for a set of weights obtained for a given example. Source:
(Kubat, 2017).

With non-convex functions, such as ANNs, it is possible to have many
local minima. Indeed, nearly any deep model is essentially guaranteed to have
a vast number of local minima. However, for sufficiently large ANNs, most
local minima have a low-cost function value, and, therefore, it is not essential
to find a true global minimum. Instead, obtaining a point in parameter space
with low but not minimal cost may be acceptable, as illustrated in Figure 3.8
(Goodfellow et al., 2016; Stewart, 2019).

Figure 3.8: Local and global minimum of a function. Source: (Stewart, 2019).
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In the case of MLPs, the problem is that the loss is a complicated compo-
sition function of the weights in previous layers, as shown by Equation (3-15).
The best-known technique used to address this difficulty is the backpropagation
algorithm, which computes the error gradients in terms of summations of local-
gradient products over the various paths from a node to the output. Although
this summation has an exponential number of components, it can be efficiently
computed using dynamic programming. The backpropagation algorithm is a
direct application of dynamic programming, and it contains two main phases
(Aggarwal, 2018):

– Forward phase: the inputs for a training instance are fed into the ANN,
resulting in a forward cascade of computations across the layers, using
the current set of weights. The final predicted output can be compared
to that of the training instance, and the derivative of the loss function
to the output is computed. The derivative of this loss now needs to be
computed with respect to the weights in all layers in the backward phase.

– Backward phase: the main goal is to learn the gradient of the loss
function with respect to the different weights by using the chain rule.
These gradients are used to update the weights.

Practical issues in ANN training may include the reaching of an unde-
sirable local minimum by the weights. To avoid that, one possibility of timely
identification of local minimum during training is to keep track of the loss
function and sum it up over the entire training set at the end of each epoch.
Under normal circumstances, this sum tends to go down from one epoch to
another. Once it seems to have reached a plateau, where hardly any error re-
duction can be observed, the learning process is suspected of being trapped
in a local minimum. Generally, this problem is less critical in networks with
many hidden neurons (Kubat, 2017).

Another common practical issue in ANN training is overfitting, which
refers to the fact that perfectly fitting a model to a particular training data
set does not guarantee that it will provide good prediction performance on
unseen test data. Small MLPs are usually not flexible enough to overfit, but
as the number of hidden neurons increases, the network gains flexibility, and
overfitting can become a real concern (Kubat, 2017; Aggarwal, 2018).

Finding the optimal structure for the trained ANN (number of hidden
layers, their neuron count, and activation function) is an arduous work,
since there are many possible combinations for the network’s main features
(Ivanov et al., 2014). If, for example, there are only one or two hidden
neurons in the ANN, it will lack flexibility and will be prone to achieve a
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local minimum. On the other hand, using thousands of neurons will not only
increase computational costs due to the need to train so many neurons but will
also cause the network to be more flexible than needed, leading to possible
overfitting of the data. Therefore, some compromise between those aspects
needs to be found (Kubat, 2017).

ANNs require careful design to minimize overfitting’s harmful effects,
even when a large amount of data is available. Since a large number of
parameters may cause overfitting, different methods may be used to mitigate
these impacts. Considering that smaller absolute values of the parameters tend
to overfit less and since it is hard to constrain their values, the Regularization
approach to reduce overfitting’s impact is based on the addition of a penalty
λ, at each parameter, to the loss function. Regularization is particularly
important when the amount of available data is limited (Aggarwal, 2018).

Even though, in general, increasing the complexity of the model reduces
its generalization power, it is often advisable to use more complex models with
Regularization rather than simpler models without it. In the Flux package,
applying Regularization to parameters is straightforward: we need to apply an
appropriate regularizer to each model parameter and add it to the overall loss.
Besides Regularization, other methods to reduce the impacts of overfitting may
be adopted, such as: Architecture and Parameter Sharing, Early Stopping and
Ensemble Methods (Aggarwal, 2018; Innes et al., 2018; Innes, 2018).

Figure 3.9 shows that the error rate measured on testing examples
depends on the number of neurons in the hidden layer. The horizontal axis
represents the number of hidden neurons, while the vertical axis represents
the error rate measured on the testing set. As shown in the graph, larger
networks exhibit lower error rates but, when they are too large, they become
vulnerable to overfitting, causing the testing-set error to start growing again
after a certain number of neurons. We highlight that the precise shape of the
curve depends on the complexity and the training data domain. In domains
where the training examples are completely noise-free, overfitting may never
become an issue. (Kubat, 2017).

Figure 3.9: Error rate measured on testing examples. Source: (Kubat, 2017).
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According to (Kubat, 2017), in the search for the appropriate network
size, the main idea is to start with a minimal network that only has a few hidden
neurons. After each epoch, the learning algorithm checks the loss function
observed on the training set, which is likely to keep decreasing with the growing
number of epochs, but only up to a certain point, in which the network’s
performance no longer improves, either due to insufficient flexibility or because
it “fell” into a local minimum. When this is observed, a few more neurons
with randomly initialized weights are added, and the training is resumed.
Usually, the added flexibility makes further error reduction possible. Figure
3.10 illustrates that when the MSE does not seem to decrease, while the number
of epochs is increasing, further improvement can be achieved by adding new
hidden neurons (Kubat, 2017).

Figure 3.10: As the number of epochs increases, the MSE value decreases until
a certain point, in which the addition of new hidden neurons contribute to
further reducing the error. Source: Adapted from (Kubat, 2017).

If the training data set is appropriately defined in size and relevance, i.e.,
the provided values cover the expected variation range of the inputs, and the
data sampling is appropriate, then the ANN will be able to calculate, with
satisfying accuracy, the solution for the problem, for any new input for which
it has not been trained, but which is in the range considered in the training
(Ivanov et al., 2014). After the ANN model has been trained, the recall process
becomes so fast that the time required for calculation of the outputs from the
test set can be saved (Hsu et al., 1995).

According to (Maçaira et al., 2018), despite the high data processing
power due to its massively distributed structure and its ability to learn and,
therefore, to generalize, producing suitable outputs for inputs that were not
presented during the training phase, ANNs require a high computational power
and a large amount of data in the training process, which may constitute an
obstacle to the implementation of this method.
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To implement MLPs for power flow studies, we considered data of the
systems’ loads and generations as inputs of the networks. We trained the MLPs
to predict the values of the systems’ active power flows and active losses. Hence,
for those implementations, topology features of the systems studied were not
needed.

A step-by-step procedure for modelling a neural network for power flow
calculations can be given by Algorithm 3 (Pertl et al., 2016).

Algorithm 3 Modelling an ANN for power flow solution
1: Collect load and generation data for the system’s buses (inputs) and the

values for the system’s active power flows and losses (targets).
2: Select the type of neural network that should be implemented.
3: Define the network architecture, i.e., how the computations should be

performed in this network. This includes the number of neurons and hidden
layers, training algorithm, training goal, among other parameters.

4: Initialization of weights (done automatically by the algorithm).
5: Train the network, based on the input and output data provided, consid-

ering the configuration defined in step 3.
6: Apply the model on the test set, which comprises unseen values for the

system’s loads and generations, or retrain the ANN. Results of different
training procedures can vary due to different initial values for weights.
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Figure 3.11 illustrates the procedure described.

Figure 3.11: Artificial Neural Network modelling procedure.

DBD
PUC-Rio - Certificação Digital Nº 1821583/CA



4
Case Studies

Chapters 2 and 3 presented different power flow techniques and the corre-
sponding methodologies for their implementations. In this Chapter, we present
the case studies designed to evaluate the effectiveness of those techniques in
solving two different challenges faced by distribution systems: the first one
aims to analyze the impacts of the DG insertion on the system’s active losses,
while the second aims to calculate the power flows between the distribution
and the transmission systems.

For the two studies, we used the software OpenDSS, version 9.1.3.3 of
2020, and Organon, version 5.9.1 of 2018, respectively, whose methods for
power flow calculations were described in Chapter 3. Based on the software
results, we trained ANNs to predict each case’s target values, in order to
analyze the efficiency of this technique.

4.1
Analysis of DG impacts on the distribution system’s active losses

The goal of the distribution system is to deliver the electricity from the
substation to the consumer. However, losses occur during this operation, caus-
ing utilities to search for techniques to minimize them, such as: reconfiguring
the network or placing capacitors as reactive power support. Those losses can
be classified as (Kahef et al., 2018):

– technical losses: related to properties of materials and their resistance
to the flowing current. Thus, they occur due to the dissipated energy in
equipment and conductors.

– non-technical losses: occur due to human faults or theft of electricity.

As mentioned in Chapter 2, electric losses are important economic
indicators for distributors since they usually appraise operating efficiency by
the amount of real power loss over the system (ANEEL, 2019).

Compared to the transmission network, the distribution system has
the particularity of complex type users and being more difficult to obtain
line parameters, leading to more challenging calculations to obtain system’s
losses, as mentioned in Chapter 2 (Chao et al., 2017). Traditional methods
for calculating line losses in a distribution network are based on line current
calculations, including root mean squared current method, average current
method, and equivalent resistance method (Zhang et al., 2013). Other proposed
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methodologies consist of improving iterative methods by matching power flow
calculation methods (Chen and Guo, 2005; Ding et al., 2000). However, the
difficulties of implementing these methods in actual operation rely on the fact
that they need detailed line parameters for calculations, which would have to
be manually collected (Chao et al., 2017).

In the Brazilian system, the National Electrical Energy Agency (ANEEL,
in Portuguese “Agência Nacional de Energia Elétrica”) splits the distribution
systems into three levels: High Voltage Distribution System (HVDS), Medium
Voltage Distribution System (MVDS), and Low Voltage Distribution System
(LVDS), according to the network’s segments, transformers, and measurement
equipment. Specific methods are applied for the obtainment of electrical losses
for each of these levels (ANEEL, 2018):

– network losses associated with the HVDS are obtained by the data from
the measurement system;

– losses in the MVDS and LVDS are calculated by the Current Injection
Method, presented in Chapter 3.

By applying the above methodology, ANEEL calculates the loss levels
that are considered efficient for the distribution system. Hence, these levels
are deterministic values and they are reviewed by the Agency at each Periodic
Tariff Review (RTP, in Portuguese “Revisão Tarifária Periódica”), which
usually occurs every 4 or 5 years, and are not altered during the current
RTP cycle. The efficient loss levels calculated by ANEEL are important to
the distributors because these values are contemplated in the distributor’s
costs with the purchase of energy; hence, they can be passed on to the final
consumers through the tariffs. Therefore, loss values greater than the efficient
level represent a high additional cost that distributors cannot pass on the
clients (ANEEL, 2018).

The introduction of generation sources on distribution systems can
significantly impact the power flow and voltage conditions at customers
and utility equipment. These impacts may manifest themselves positively
or negatively, depending on the system’s operating characteristics and the
DGs characteristics. Therefore, it is critical that the power system impacts
are assessed accurately so that these DG units can be inserted in a manner
that avoids causing degradation of power quality, reliability, and control of the
distribution system (Barker and Mello, 2000).

Positive impacts are generally called “system support benefits”, and may
include (Barker and Mello, 2000):

– voltage support and improved power quality;
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– loss reduction;

– transmission and distribution capacity release;

– improved utility system reliability.

However, achieving these benefits is in practice much more difficult than is
often realized because DG sources must be reliable, dispatchable, of the proper
size, at the proper locations, and they must also meet various other operating
criteria. Since many DGs are not utility-owned and are variable energy sources,
such as solar and wind, there is no guarantee that these conditions will be
satisfied and that the full system support benefits will be realized. In fact,
power system operations may be adversely impacted by the introduction of
DG if certain minimum standards for control, installation, and placement are
not maintained (Barker and Mello, 2000).

Hence, a good load flow analysis software should be able to model, for
example, the effects on the system’s technical losses after the installation of
DG units. On feeders where losses are high, a small amount of strategically
placed DG with an output of just 10−20% of the feeder total demand can have
a significant loss reduction benefit for the system (Barker and Mello, 2000).

In Brazil, since the methodology adopted by ANEEL is deterministic,
if during an RTP cycle, the local generation experiences great variations,
due to the stochastic nature of renewable DGs, there may be a divergence
between the technical losses recognized by ANEEL and the ones observed
by the distributors. However, the current regulation already contemplates the
possibility of the injected generation being significant in relation to the loads,
for the MVDS and LVDS. In this case, the distributors may submit a loss
analysis for ANEEL’s evaluation (ANEEL, 2018, 2019).

In this section, we will focus on the impacts on the distribution system’s
active losses due to DG units’ introduction. The IEEE 34-bus test feeder was
selected as our distribution test system. According to (Kersting, 2001; Davoudi
et al., 2015), this system is a very long and lightly loaded actual feeder, located
in Arizona, with a nominal voltage level of 24.9kV , and it is characterized by:

– three-phase and single-phase lines;

– two in-line regulators, required to maintain an adequate voltage profile;

– an in-line transformer, reducing the voltage to 4.16kV, for a short section
of the feeder, downstream the transformer at bus 832;

– unbalanced loading, with both “spot” and “distributed” loads, which are
assumed to be connected at the center of the line segment;

– shunt capacitors.
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Figure 4.1 illustrates the feeder, with its 25 loads.

Figure 4.1: Original configuration of IEEE 34 bus system. Source: Adapted
from (Panesso-Hernández et al., 2015).

In order to evaluate the impacts of DG insertion on the system’s electric
losses, we modified the original system of Figure 4.1, by considering only spot
loads and the insertion of PV generation in six buses, operating in “parallel”
with the feeder. The modified system presents 28 spot loads, as illustrates
Figure 4.2.

Figure 4.2: Modified configuration of IEEE 34 bus system. Source: Adapted
from (Panesso-Hernández et al., 2015).

Distributed loads were converted into three-phase spot loads assuming,
in all cases, a constant power factor of 0.9. For our study, we retrieved data
from (Mancilla-David et al., 2020), to obtain:
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– one year of loads’ hourly measurements for each bus of the system. The
peak loads in this profile match those of the IEEE test feeder.

– PV generation profiles, containing one year of hourly measurements, for
each unit installed in the system, which were obtained based on data
from one year of hourly solar spatial radiance and ambient temperatures,
considering the length of feeder segments for spatio-locations. These
weather data were converted into power production at Maximum Power
Point (MPP) tracking, assuming the PV arrays are constructed using
Canadian Solar CS6X-325P PV panels.

This section’s main goal is to analyze the effects of inserting DG units
in the operation of a distribution system. Next, we describe two case studies
that aim to evaluate whether this type of generation is beneficial, or not, to
the system.

4.1.1
DG insertion as a percentage of the bus load

Once we obtained those data from (Mancilla-David et al., 2020), we
inserted the DG units in the system, at different levels for each hour of the day,
in a way that they would be able to meet a percentage α of the corresponding
bus load. Hence, each bus’ hourly PV generation was calculated based on the
generation profiles and the corresponding bus loads.

An essential aspect of this calculation is that the DG’s insertion level α
must agree with the variations of the generation profiles so that, throughout
the morning, these insertion levels increase until they reach the maximum
generation value (which, typically, occurs at 12h or 13h) and, then, decrease,
until there is no more PV generation available. Therefore, to obtain these
hourly penetration levels, we calculated the maximum hourly generation value
for each day of the historical data and for each bus of the system, and
considered that this value corresponds to an insertion level of 100%. Hence,
the remaining levels were calculated as a percentage of the maximum value
obtained.

Another critical aspect observed is that the PV generation must be close
enough to the load values not to limit its capacity on the load supply. In the
hour of maximum PV generation, the insertion level must be 100%, so that
the total bus load, for this hour, can be supplied by the DG unit. For example,
consider a situation where a particular bus presents a 100kW load at 12h and
the corresponding PV generation is limited to 20kW . At noon, according to
our premise, the PV generation should be able to supply the total bus load,
but it is limited to a much smaller value, leading us to an infeasible situation.
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Hence, to adequate generation and load values, we calculated a factor β, for
each bus, and each day, to scale the PV generation profile so that the total
load average is equal to the total modified PV generation profile average.

Therefore, in order to address the aforementioned aspects, we imple-
mented the procedure described in Algorithm 4 to insert the DG on the mod-
ified IEEE 34-bus system.

Algorithm 4 DG insertion on the modified IEEE 34-bus system
1: Calculation of the daily load average at each bus (averageload).
2: Calculation of the daily average of the PV generation profile for each bus

(averagePV ).
3: Calculation of a factor β = averagePV /averageload, for each bus, at each

day of the historical data.
4: Division of all the daily generation profiles (profilei,t) by the β factor, at

each bus.
5: Identification of the highest value for the daily generation profile, at each

bus i, given by maxi.
6: Calculation of a parameter αi,t = profilei,t/maxi, representative of the

DG hourly insertion, for each bus i, in a period t.
7: The PV generation, at each bus, can be obtained by the multiplication of

its hourly load to the corresponding factor α.

To illustrate the procedure for obtaining the PV generation, Figures
4.3a and 4.3b show the values of the hourly PV profiles, already scaled by
the parameter β, and the load values for bus 808, at the first day of the
historical series. The α parameter was obtained by dividing each value of the
generation profile by the maximum value of the daily profile, as shows Figure
4.3a. Once the parameter α was calculated, the PV generation was obtained
by multiplying this factor by the corresponding hourly load, as shows Figure
4.3b. This procedure was implemented for all of the system’s buses where the
DG was inserted and for every day of the analyzed year.
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(a) Calculation of parameter α. (b) Calculation of PV generation.

Figure 4.3: Procedure for obtaining the DG insertion for bus 808, at day 1.

Following this procedure, we could obtain a liquid hourly load for each
bus by subtracting the PV generation from the original hourly load value. This
procedure was implemented only for the active PV generations.

According to (Kersting, 2001), there may be a convergence problem in
the power flow calculations of the IEEE 34-bus system due to the feeder’s
length and the unbalanced loading if traditional power flow methods are
applied. Hence, to avoid convergence issues, we adopted the Current Injection
Method approach, described in Chapter 3. Based on the calculated values for
the system’s liquid load, we performed simulations on the OpenDSS software,
aiming to obtain the entire system’s active electric losses, and considered these
simulations results as our benchmark for this study. In order to evaluate the
effects of the DG insertion on the system’s active losses, the simulations were
performed with and without the PV generators penetration.

From the simulations results, we observed that, for every month of the
analyzed year, the active losses of the entire system decreased during the
periods in which there is PV generation, as illustrates Figures 4.4a to 4.4l.
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Besides that, we highlight that the most considerable losses of the system
occurred during December.

For every hour of the historical data, we verified the percentage of the
total load in the system supplied by the DG. Among the 8760 operating points
that were studied, for the case in which the DG has the highest participation
in the loads’ supply, this percentage corresponds to 16.5%. Hence, the DG
insertion in the study is within limits considered by (Barker and Mello, 2000)
as beneficial for the decrease of the system’s losses.

(a) Losses - January (b) Losses - February (c) Losses - March

(d) Losses - April (e) Losses - May (f) Losses - June

(g) Losses - July (h) Losses - August (i) Losses - September

(j) Losses - October (k) Losses - November (l) Losses - December

Figure 4.4: Comparisons between active losses with and without DG insertion
on the system. System’s losses without DG insertion are represented in red
and losses with DG penetration are illustrated in blue.
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4.1.2
DG insertion as a percentage of the system’s total load

We simulated a new case study for the IEEE 34-bus system in which
each DG unit inserted is responsible for the supply of a part of the system’s
total load instead of supplying a percentage of the bus load.

We applied the same procedure for obtaining the α factor described
in the previous section, but the PV generation was calculated based on the
total system load. Therefore, we stipulated that the DG units would supply
a percentage α of one-third of the system’s total load at each hour of the
historical year. Hence, at the time period when the PV generation is at its
maximum capacity (α = 1), we have six DG units generating one-third of the
system’s total load, i.e., the PV generation corresponds to the double of the
value for the system’s total demand.

We followed the same procedure described in Algorithm 4 to obtain the
PV generation, adapting the load values to one-third of the system’s total
demand, instead of the bus load, for the calculations of the β factor and the PV
generation. We highlight that, since we modified the load value for calculating
the β parameter, the average of the modified PV profile is equal to the average
of one-third of the system’s total load for each analyzed day. Hence, the new
values for the α parameter are equal to the values obtained in the first study.
Figures 4.5a and 4.5b present the values obtained, in this case, for the modified
PV generation profile, the total load and the PV generation at bus 808 for the
first year of the historical data set.
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(a) Calculation of the α factor. (b) Hourly loads at bus 808 and obtain-
ment of the PV generation according to
the calculated values for the α factor
and the system total load.

Figure 4.5: Procedure for obtaining the DG insertion for bus 808, at day 1.

For every hour of the historical data, we verified the percentage of the
total load in the system supplied by the DG. Among the 8760 operating points
studied, for the case in which the DG has the highest participation in the loads’
supply, this percentage corresponds to 200%, a much superior value than the
one calculated in the first case study. This value is also much higher than the
limits of DG insertion considered, in the literature, as beneficial for the system
operation. The adverse effects of the high insertion of PV generation can be
detected in Figures 4.6a to 4.6l, in which it is possible to observe that the
system’s total active losses increase in the hours of the day when there is PV
generation.
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(a) Losses - January (b) Losses - February (c) Losses - March

(d) Losses - April (e) Losses - May (f) Losses - June

(g) Losses - July (h) Losses - August (i) Losses - September

(j) Losses - October (k) Losses - November (l) Losses - December

Figure 4.6: Comparisons between active losses with and without DG insertion
on the system. System’s losses without DG insertion are represented in red
and losses with DG penetration are illustrated in blue.

From Figures 4.6a to 4.6l we can also observe that the highest values
for the system’s losses, in this case, occurred during July. This is due to the
fact that, in this month, the PV generations are higher since it is the summer
season, producing higher losses in the system.

The two case studies for the IEEE 34-bus system presented in this section
were able to demonstrate the impact that DG units have on distribution
systems’ operation. These examples also illustrate the possibility of positive
and negative effects from the DG insertion in relation to the system’s losses.
As mentioned by (Barker and Mello, 2000), when the distributed generation is
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within acceptable limits, it has a positive impact on the system’s total losses, as
presented in the study of section 4.1.1. However, the last study demonstrated
that, when the units are not in the proper size, they may harm the system
operation regarding the active losses.

4.2
ANN prediction of the system’s active losses

Since the system’s technical losses are an important feature for distribu-
tion utilities, as mentioned in Chapter 2, we trained an ANN, according to the
simulations results obtained by OpenDSS for the system described in section
4.1.1, aiming to predict these values. As it was also pointed out in Chapter 2,
our main goal in evaluating the possibility of using trained ANNs to estimate
critical variables of power systems is to avoid the need to know the system’s
topology features for each operating point to be analyzed.

Therefore, to address this issue, we propose an ANN that requires, as
inputs, only the liquid active load values at each one of the 28 buses in the
system. Besides that, we also considered a bias vector, in which, initially, all
elements were set to one, leading us to an ANN of 29 inputs. The historical
data set, which comprises hourly measurements of loads for one year, i.e., 8760
measurements, was equally divided between training and test, that is, 50% of
the data was used to train the ANN, and the remaining was used to test the
trained model.

As mentioned in Chapter 3, to achieve the best network architecture
possible, we started the training phase with a small network and a small
number of epochs and observed the predictions generated by each configuration
evaluated until the best architecture was obtained. Table 4.1 presents the
ANN architecture parameters that produced the best results among the
configurations evaluated.

Prediction Hidden
layers

Activation
Function

Loss
Function

Epochs Batch
Size

Active 2 Sigmoid/ MAE 1000 40
Losses Leaky

ReLU

Table 4.1: Training parameters for the ANN.

The parameter “batch size” in Table 4.1 corresponds to the number of
examples from the training data set used to estimate the error gradient. In this
case, a batch size of 40 means that 40 samples from the training data set were
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used to estimate the error gradient before the model weights were updated
(Brownlee, 2019).

Table 4.2 shows the simulation times obtained for the train and eval-
uation data sets for the two methods implemented to calculate the system’s
active losses. We highlight that we were able to simulate the 8760 operation
points in OpenDSS in such a short time due to the use of the Julia package
OpenDSSDirect, which implements a direct library interface to OpenDSS (Kr-
ishnamurthy, 2020). As mentioned in Chapter 3, to implement the ANN, we
used the Julia package Flux.

Data set ANN (s) Benchmark3 (s) Acceleration Ratio
Train 88.50 7.76 9× 10−2

Evaluation 0.016 6.26 391

Table 4.2: Simulation times comparison for train and evaluation data sets.

In Table 4.2, we calculated an Acceleration Ratio that corresponds to
the time required by the benchmark method (in this case, OpenDSS) to run
the simulations, divided by the ANN time to generate predictions for the same
data set. We can observe that the necessary time to train the ANN is greater
than OpenDSS time to run the same simulations, causing the ratio to be
smaller than one. However, for the evaluation data set, the ANN is much
faster in predicting the system’s active losses than OpenDSS, leading us to an
Acceleration Ratio of 391. Therefore, even though the ANN training requires
more computational time compared to OpenDSS performance, we gain a much
greater time in the simulation of the test set.

Although computational time is an important aspect of the study, it is
not enough to determine one technique’s superiority over the other. In order to
evaluate the performance of the ANN predictions, we calculated the following
metrics, considering that yt is our target value, ŷt is the predicted one, at each
period t, and that we have a total of n periods:

3We highlight that, for the benchmark software, there is no need for training and
evaluation phases. In the Table, the time referring to the training and evaluation sets for the
software corresponds to the simulation of the operating points in each of the two sets. The
division of the operating points’ simulation between training and evaluation sets allowed us
to effectively compare the times obtained by the benchmark method and by the ANN. The
same approach was used in Tables 4.4 and 5.1.
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– MAE (Mean Absolute Error):

MAE = 1
n

n∑
t=1
|errort|, (4-1)

where errort = yt − ŷt.

– MAPE (Mean Absolute Percetage Error):

MAPE = 1
n

n∑
t=1

|errort|
|yt|

(4-2)

– Percentiles of the prediction errors (P5, P50 e P95).

We also calculated the above metrics according to the total active load
of each period t:

– MAE in relation to the total active load:

MAEload = 1
n

n∑
t=1

|errort|
loadt

, (4-3)

where loadt corresponds to the total active load of the internal system
at time t.

– MAPE in relation to the total active load:

MAPEload = 1
n

n∑
t=1

|errot|
loadt
|yt|
loadt

(4-4)

– Percentiles of the prediction errors, in relation to the total
active load (P5load, P50load e P95load).

Since errort, loadt and yt are all given in MW , the metrics calculated in
relation to the demand are dimensionless. Besides that, from Equations (4-2)
and (4-4), we can observe that the calculated values forMAPE andMAPEload

are equal. Table 4.3 presents the calculated metrics for the training and test
sets.

From the results presented in Table 4.3, we can conclude that the ANN
predictions for the system’s active losses were very accurate. Figures 4.7a and
4.7b show the histograms of the obtained values for in-sample and out-of-
sample prediction errors. We can observe that the most significant absolute
error was 0.0075MW in the evaluation set.
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In-sample prediction (Training data set)
Metric Losses Metric Losses/Demand
MAE(MW) 2.39× 10−4 MAEload 3.25× 10−4

MAPE(%) 0.44 MAPEload(%) 0.44
P5(MW) −3.74× 10−5 P5load −7.19× 10−5

P50(MW) 1.63× 10−4 P50load 2.60× 10−4

P95(MW) 7.29× 10−4 P95load 8.41× 10−4

Out-of-sample prediction (Test data set)
Metric Losses Metric Losses/Demand
MAE(MW) 2.80× 10−4 MAEload 3.51× 10−4

MAPE(%) 0.46 MAPEload(%) 0.46
P5(MW) −3.60× 10−5 P5load −6.71× 10−5

P50(MW) 1.67× 10−4 P50load 2.64× 10−4

P95(MW) 8.88× 10−4 P95load 9.53× 10−4

Table 4.3: Calculated metrics for in-sample and out-of-sample predictions of
system’s losses.

(a) In-sample prediction errors. (b) Out-of-sample prediction errors.

Figure 4.7: Histogram of the prediction’s error for the in-sample and out-of-
sample data sets. Quantiles of 5%, 50% and 95% are represented by red, blue,
and green lines, respectively.

Figures 4.8a and 4.8b compare the ANN predictions to the active
losses values obtained from the OpenDSS simulations, proving the remarkable
capacity of the ANN to generalize to unseen operating points.
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(a) In-sample observed and predicted loss val-
ues.

(b) Out-of-sample observed and predicted loss
values.

Figure 4.8: Histogram of the observed and predicted loss values for the in-
sample and out-of-sample data sets. OpenDSS’ results are represented in blue
and ANN’s predictions are illustrated in orange.

From the results presented in Table 4.3 and Figures 4.7a, 4.7b, 4.8a and
4.8b, we can conclude that the trained ANN architecture was able to meet,
with good accuracy, the results from the OpenDSS simulations. Although the
ANN training time was greater than OpenDSS simulation time, we can verify
that, once the ANN is well trained, applying the model obtained to new inputs
is practically instantaneous, as the evaluation time in Table 4.2 demonstrates.

Based on that, we can infer that, although we require knowledge of
topology features from the distribution system and, possibly, a long time to
train an ANN aiming to predict the system’s losses, once the best model is
obtained, the ANN approach may constitute an adequate option to replace
applications, such as OpenDSS, when there is a need for fast results obtainment
for new operating points.

Also, as mentioned in Chapter 2, the knowledge of all topology features
for each operating point is a common challenge in distribution systems. In this
aspect, the ANN approach offers an advantage since once the ANN is trained,
not all topology features need to be available.

4.3
Power flows between distribution and transmission systems

Figure 4.9 illustrates a distribution system under analysis at time t ∈ T

and its respective power flow, with T being the set of intervals of 15 minutes in
the study horizon. The demands {Pj,t}, j ∈J , and {Pu,t}, u ∈ U , correspond
to power imports at border points, with J and U being the sets corresponding
to the network’s connection points with the transmission system and with other
distributors, respectively (Street et al., 2020).

DBD
PUC-Rio - Certificação Digital Nº 1821583/CA



Chapter 4. Case Studies 71

Figure 4.9: System at instant t. Source: Adapted from (Street et al., 2020).

The values verified for {Pj,t} and {Pu,t} are a consequence of the topology
of the electrical system and of the operating point, defined by {pi,t}, i ∈ B,
with B being the set of load and generation buses, or buses representing input
substations for regions of final consumers (Street et al., 2020).

The main goal of the study presented in this section is to obtain, for a
real distribution system in Brazil, the power flows on the borders between the
network and the transmission system, i.e., variables {Pj,t} of Figure 4.9. The
analyzed network corresponds to a real distribution system in Brazil, which
comprises 12 borders with the transmission system. In order to obtain the flows
{Pj,t}, we considered the full representation of the Brazilian electric system.

For this study, we used historical data of the distribution system selected:
we considered active and reactive load variations in 46 load buses and active
generation variations in seven generation buses, while the remaining loads
and generations of the electric system were considered constant during the
simulations. The historical data were obtained from measurements, at every
15 minutes, of the period from 01/01/2016 to 31/03/2019, totaling 113344
operating points.

Power flows on the borders were considered positive in the case of energy
import from the external system. Hence, we considered the flow from the buses
external to the distribution system to the internal buses as positive for our
calculations. Therefore, in the case of energy export from the distribution to
the transmission system, we have negative power flows.

Since the simulations were conducted considering the entire Brazilian
electric system and not only the distribution network, we applied Newton’s
method for the power flow calculations. Hence, we considered the results
obtained by the software Organon as our benchmark. We were able to simulate
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this amount of operating points in Organon using a Dynamic Link Library
(DLL), which implements a direct library interface of Organon in Julia. We
highlight that this DLL was developed by HPPA and is not available for public
access.

Once we obtained Organon results for the flows in the 12 borders between
distribution and transmission systems and, aiming to predict these values
without the need to conduct power flow calculations for each operating point,
we designed an ANN to predict flows at the borders. This ANN was trained
according to Organon simulations results.

The ANN was designed with 54 inputs, corresponding to the historical
data of 46 load buses and seven generation buses, plus a bias vector, and 12
outputs, corresponding to flows in the borders with the transmission system.
The data set was equally divided between training and evaluation, i.e., 50% of
the historical data was used to train the ANN, and the remaining was used to
evaluate the trained model. Table 4.4 summarizes the parameters adopted for
the best ANN architecture obtained.

Prediction Hidden
layers

Activation
Function

Loss
Function

Epochs Batch
Size

Flows at 2 Sigmoid/ MSE 1000 32
Borders Leaky

ReLU

Table 4.4: Training parameters for the ANN.

After training and testing the best model obtained for the ANN, we
compared the simulation times for our benchmark (Organon) and the ANN.
Once again, we calculated an Acceleration Ratio in order to compare both
times. Table 4.5 presents the simulation times obtained and the calculated
ratio.

Data set ANN (s) Benchmark (s) Acceleration Ratio
Train 1924 2556 1

Evaluation 0.134 2520 18806

Table 4.5: Simulation times comparison for train and evaluation data sets. The
simulations’ details for the train and evaluation data sets by the benchmark
method are described on the footnote on page 67.

From Table 4.5, it is possible to observe that, although the obtained
times for the simulations of the training data set were fairly close, leading
to an Acceleration Ratio of approximately one, for the evaluation set, the
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ANN time required to predict the flows in the borders was about 18806 times
smaller than the necessary time for our benchmark software to run the same
simulations.

Despite the great results obtained regarding the simulation times, in
order to fully evaluate the ANN’s performance in predicting power flows on
the 12 borders, we calculated seven metrics, described as follows. Due to the
possibility of power flow inversion, we assumed that the observed values yt
correspond to positive flows. Hence, by denoting the direction of the observed
flows as sgnt and the predicted flows as ŷt, we calculated the prediction errors
as:

sgnt = yt/|yt| (4-5)

errort = sgnt(yt − ŷt) (4-6)
Based on the values obtained for the prediction errors, given by Equation

(4-6), we were able to calculate, for each border, the three metrics described in
section 4.2: MAE, given by Equation (4-1), MAPE, given by Equation (4-2),
and the Percentiles of the prediction errors (P5, P50 and P95). Besides that,
for the predictions of the flows at the borders, we also calculated:

– MSE (Mean Squared Error):

MSE = 1
n

n∑
t=1
error2

t (4-7)

In order to evaluate what a prediction error on the power flow in fact represents,
we calculated, for each border, the average of the absolute observed flows, given
by:

FLOWavg = 1
n

n∑
t=1
|yt| (4-8)

Based on the values obtained from equation (4-8), we calculated the MAE
in relation to the average flow as:

– MAE in relation to the average flow:

MAErel = MAE

FLOWavg

(4-9)

Hence, through Equation (4-9), we can analyze the magnitude of the
Mean Absolute Error calculated by Equation (4-1). For example, if we obtain,
for a given border, at a given operating point, a prediction error of 5MW , this
error will be more significant if the average flow on the border is 20MW than
if it is 200MW . The MAE calculation in relation to the average flow, given by
Equation (4-9), provides us this sensitivity in the error analysis.
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Table 4.6 summarizes the calculated metric values for each border
between the distribution system and the Brazilian transmission system.

From the results presented in Table 4.6, we can observe the ANN
predictions’ great accuracy for the flows at the borders. Figures 4.10a to 4.10l
show the histograms of the prediction errors obtained for the out-of-sample
data set. We can observe that the worst predictions occurred at Border 11.

(a) Prediction Errors - Border 1 (b) Prediction Errors - Border 2 (c) Prediction Errors - Border 3

(d) Prediction Errors - Border 4 (e) Prediction Errors - Border 5 (f) Prediction Errors - Border 6

(g) Prediction Errors - Border 7 (h) Prediction Errors - Border 8 (i) Prediction Errors - Border 9

(j) Prediction Errors - Border 10 (k) Prediction Errors - Border
11

(l) Prediction Errors - Border 12

Figure 4.10: Histograms of out-of-sample prediction errors for the flows on the
borders. Quantiles of 5%, 50% and 95% are represented by red, blue, and green
lines, respectively.
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Figures 4.11a to 4.11l compare the ANN predictions and the observed
flows at the borders obtained from Organon simulations, proving, once again,
the remarkable capacity of the ANN to generalize to unseen operating points.

(a) Observed x Predicted - Bor-
der 1

(b) Observed x Predicted - Bor-
der 2

(c) Observed x Predicted - Bor-
der 3

(d) Observed x Predicted - Bor-
der 4

(e) Observed x Predicted - Bor-
der 5

(f) Observed x Predicted - Bor-
der 6

(g) Observed x Predicted - Bor-
der 7

(h) Observed x Predicted - Bor-
der 8

(i) Observed x Predicted - Bor-
der 9

(j) Observed x Predicted - Bor-
der 10

(k) Observed x Predicted - Bor-
der 11

(l) Observed x Predicted - Bor-
der 12

Figure 4.11: Histograms of the observed and predicted borders flows for the
out-of-sample data set. Organon’s results are represented in blue and ANN’s
predictions are illustrated in orange.

From the results obtained, we observed that Border 5 presented very
small values for energy import. This is due to the fact that this border is
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only used in case of contingencies, i.e., under normal operating conditions, the
power flowing in this border is around zero. Besides that, on Border 12, we
can observe that, in all of the operating points simulated, the power flows were
negative, leading us to conclude that this border exported energy during the
entire historical time that was analyzed. From the errors histograms, illustrated
in Figures 4.10a to 4.10l, we can observe that the highest prediction errors
occurred in a very small amount of operating points when compared to the
simulated total.

Based on that and on the high Acceleration Ratio obtained for the
evaluation data set, we can conclude that, for this application, the ANN
approach can also be considered an adequate tool to rapidly obtain results
when there is no need to run power flow calculations, or in situations in which
the topology features are unavailable or incomplete.

In the Brazilian transmission system, operation and maintenance costs
are shared among its users, essentially generators and distributors. Thus, at
each connection point between transmission and distribution, the distributors
must pay a tariff for the use of the transmission system, applied to an annual
demand contract4. The definition of this contract is based on the user’s
maximum demand forecasts for a four-year horizon. Hence, since the contract
constitutes a decision under uncertainty, the distributor’s risk aversion profile
must be reflected in it (Telles et al., 2018).

Therefore, the flows in the borders between the distribution and the
transmission systems directly influence the demand contracting process and,
consequently, the distributor’s costs. The next Chapter will present an analysis
of the demand contracting process and a comparison between the simulated
contracts’ results, according to the values of the flows at the borders obtained
by Organon and predicted by the ANN.

4In the Brazilian context, this demand contract was named “Montante de Uso do Sistema
de Transmissão” (MUST), defined by the regulatory rule REN666/2015 (ANEEL, 2015).
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5
Application of ANN methodology

In the previous Chapter, we presented the possibility to implement
trained ANNs to predict power flows. For the case study considered, the ANN
was trained based on the results obtained by the benchmark method and, then,
we performed tests, with a different data set, in order to evaluate the ANN’s
predictions. We were able to observe that the predictions were accurate and
the time required to run the simulations, once the ANN was appropriately
trained, was much smaller than the time required by the benchmark method
to perform the same calculations.

We concluded Chapter 4 mentioning that power flows in the borders
between the transmission and the distribution systems are an essential feature
for distributors, since they have a direct influence in the demand contracting
process. Next, we will present the basis of this demand contracting process,
according to proposals from the literature, and will compare the optimal
contracts considering the power flow in the borders obtained by Organon and
by the ANN, for the distribution system described in Chapter 4.

5.1
Basis of the demand contracting process

According to (Telles et al., 2018) demand contracts between the distri-
bution and the transmission systems have two main purposes: remunerate the
costs of the transmission system, and provide adequate signs for the expansion
of the transmission network. In this sense, the accuracy of the maximum de-
mand forecast, made by the distributors, is essential for the planner to identify
the needs for investments and reinforcements or improvements in the network
to meet the demand and to ensure the reliability of the system. If the ob-
served demand exceeds the contracted amount (undercontracting), in addition
to paying the amount surplus, the distributor will be penalized for exposing the
system to supply risk. On the other hand, if the distributor overestimates the
maximum demand over the contract horizon (overcontracting), it may suffer
penalties, in order to induce better forecasts and avoid unnecessary invest-
ments.

To determine the efficiency of a demand contract, the difference between
the maximum demand observed and the value of the demand contract must
be obtained, considering a tolerance. In the case of the Brazilian system,
for the monthly horizon, this tolerance is 110% of the contracted value: if

DBD
PUC-Rio - Certificação Digital Nº 1821583/CA



Chapter 5. Application of ANN methodology 79

the maximum demand verified is greater than this tolerance, penalties for
undercontracting must be applied. On the other hand, for the annual horizon,
if the maximum demand verified is less than 90% of the contracted value,
the distributor is penalized for overcontracting. In both cases, the distributor
cannot pass on the costs of the penalties to final consumers (Telles et al., 2018).

The contractual rules act as control parameters that the transmission
planner employs to adjust the reliability implied in the forecasts that the
demand contract represents. In an ideal scenario, the optimal contract is the
one in which there is neither undercontracting nor overcontracting. However,
often, additional costs due to undercontracting lead distributors to opt for a
more conservative contract, which is based on the maximum demand verified
in the previous year, in order to avoid penalties. Thus, it is of great relevance
for the electricity sector to develop an optimal strategy for demand contracts,
considering the tradeoff between the exposure to penalty costs and the fixed
contract cost, considering the risk profile of each distributor (Telles et al.,
2018).

5.2
Strategies to obtain the optimal demand contract

The strategy for defining the demand contract must take into account, in
addition to the contracting rules, uncertainties that affect the power flow at the
distributor’s connection points, such as the uncertainties of consumption and
generation and the ones originated from the renewable and intermittent supply
in the distributor’s network. For simplicity, any renewable and intermittent
injection into the distributor’s network will be called Internal Renewable
Generation (IRG) from now on (Telles et al., 2018).

Thus, in addition to the uncertainties related to consumer behavior and
generation capacity, climate variations, such as temperature and rainfall, gen-
erally explain peaks in demand and IRG profiles. In general, when the IRG is
relevant in relation to the distributor’s total demand, there is a decrease in de-
mand at the connection points. As a result, the demand contract is reduced and
the expansion of the transmission system is benefited, since less investments
in expansion are needed to meet the distributor’s demand. Hence, to capture
the benefits of IRG in the expansion of the transmission system, it is necessary
to consider it in the demand hiring decision; otherwise, cases of extreme over-
contracting may occur. This aspect has become increasingly important with
the growth of DG units’ insertion, making the correct characterization of IRG
variability essential (Telles et al., 2018; Street et al., 2020).

Therefore, based on the exposed factors, the distributor’s decision must
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take into account both the benefits of the IRG and the costs for contract
penalty. The higher the IRG, the smaller the demand contract should be,
since net imports are reduced (Street et al., 2020).

In addition, aspects of the distribution systems’ actual operation, such
as the random occurrence of contingencies and the realization of maneuvers
on the network, when pre-defined operating rules are violated, directly affect
power imports at border buses. Such rules may include network security limits
or serve as a contingency plan in the event of equipment failure. Thus, the
distributors contracting decision strategy must consider the tradeoff between
the minimum value of demand contract that avoids unnecessary investments
in the transmission system, and the demand contract that minimizes penalty
costs (Telles et al., 2018).

According to (Street et al., 2020), there are three main stages that should
be considered in the obtainment of the optimal demand contracting strategy,
as illustrates Figure 5.1. The next sections will describe these stages for the
distribution system studied in Chapter 4.

Figure 5.1: Main stages for optimal demand contracting strategies.

5.2.1
First stage: Simulation of demand/generation scenarios

According to (Street et al., 2020), the first stage of the demand contract-
ing process corresponds to the generation of a scenarios set Ω that represent
the variability in the operating points pi,t, ∀i ∈ B, t ∈ T , as illustrated in
Figure 4.9, produced by uncertainties regarding demand and IRG. Thus, a set
of scenarios for i ∈ B and t ∈ T must be defined for the contracting horizon.

Load trends are influenced by several factors but, in general, follow
statewide temperatures on average and the load profiles from the same period
in previous months and years (CAISO, 2019). Hence, statistical methods can
be used to simulate a set of scenarios, based on the history of demand and
climate variables (Street et al., 2020).

For the case of the distribution system selected, we generated a set Ω
of 200 scenarios for each one of the 46 load buses and seven generation buses
registered in the study. In order to estimate the models applied to create the
scenarios, we used the historical data, from 01/01/2016 to 31/03/2019, for each
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load/generation bus. For the scenarios generation, we adopted the methodology
to simulate long-term demand scenarios in an hourly frequency, proposed in
(Bodin et al., 2019; Street et al., 2020).

Once the scenarios were generated, we were able to proceed to the second
stage of the demand contracting process.

5.2.2
Second stage: Power Flow Studies

Based on the load/generation values obtained for each scenario, we were
able to perform power flow calculations, to obtain power imports from the
transmission to the distribution system, at each border. Once again, we used
Organon as our software benchmark. The flow results obtained by Organon for
the scenarios generated in the First Stage correspond to hourly measurements,
for 21 months (totaling 15360h).

We highlight that the necessity to simulate future scenarios representing
the variability of operating points in the First Stage may result in new input
(load/generation) scenarios outside the variation range from the historical data
set. As mentioned in Chapter 3, ANNs can calculate, with satisfying accuracy,
the solution for any new input for which it has not been trained but which is in
the training’s range (Ivanov et al., 2014). Hence, the previous model obtained
after the ANN training with historical data in Chapter 4 could not be directly
applied to the First Stage scenarios.

Aiming to train an ANN to predict the flows at the borders for the set
of scenarios generated, we selected representative groups from these scenarios:
from the 200 scenarios generated, 68 were selected to train the ANN, while
the remaining 132 scenarios were used to evaluate the model obtained in the
training phase. The three main scenarios selections performed can be described
as follows:

1. First Selection: for each border, the 200 scenarios generated were
divided into three clusters, according to the K-means technique. The
procedure followed to determine which scenarios would be included in
the training phase can be described as follows:

– for each cluster, the scenarios liquid demand (dω = ∑
loads −∑

generations) was calculated and the cluster’s total liquid demand
was obtained (dc = ∑

dω);
– for each border, the cluster with the highest liquid demand was
selected and, from the scenarios belonging to this cluster, we se-
lected: the scenario corresponding to the highest flow at the border;
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the scenario corresponding to the highest flow at the border, for a
given period, randomly selected between 1 and 15360; the scenario
whose total liquid demand is the closest to the value of the average
liquid demand among the scenarios; the scenario corresponding to
the lowest flow at the border.

– for each border, we conducted a similar selection to the one de-
scribed above, for the lowest liquid demand cluster;

– from the cluster presenting intermediate value for the liquid de-
mand, for each border, we selected the scenario whose total liquid
demand is the closest to the value of the average liquid demand
among the scenarios.

Figure 5.2 illustrates the First Selection process for Border 9, for example,
describing the number of scenarios per cluster, the total liquid demand
for each cluster, and the corresponding selection of scenarios.

This procedure resulted in nine scenarios selected for each of the 12
borders, totaling 108 selections. However, from these scenarios, we only
included in the training those that were selected more than once, result-
ing in the selection of 10 scenarios and the disposal of the remaining 98
scenarios.

Figure 5.2: First Selection of scenarios for Border 9. The Figure illustrates that
the first cluster contains a larger number of scenarios and a higher value for
the total liquid demand. Similarly, the second cluster is larger and presents a
higher value for total liquid demand than the last cluster.
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2. Second Selection: for each border, we obtained the scenarios that
generated the highest and the lowest observed flows. Figure 5.3 shows
the procedure adopted for this selection, for Border 9.

Figure 5.3: Second Selection of scenarios for Border 9.

The Second Selection resulted in 24 scenarios, two for each border.
We compared these scenarios to those that were discarded in the First
Selection and, once again, only the scenarios selected more than once
were included in the training, resulting in 16 new scenarios.

3. Third Selection: for each border, we divided the power flow results
into the analyzed days and obtained the maximum flow, for each of the
24h of a day, and the load/generation scenario that produced this flow.
Figure 5.4 describes the process of dividing the flows at Border 9 into
24h “blocks” and selecting the highest flows for every hour of the day.

Figure 5.4: Third Selection of scenarios for Border 9.

Hence, for each border, the Third Selection resulted in 24 scenarios se-
lected, totaling 288 scenarios for all the 12 borders. From these scenarios,
we included in the training those that were not previously selected, re-
sulting in 42 new scenarios.

The best ANN architecture obtained for the distribution system under
analysis, described in Table 4.4, was applied to train the 68 scenarios selected.
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In this case, we applied the Transfer Learning technique during the new
training phase: we initially trained the ANN for the first scenario selected,
with 30 epochs; next, for the second scenario, instead of randomly initialize
the ANN’s weights, we applied the model obtained from the first scenario
training and so on. This way, we were able to reduce the training time and to
improve the quality of the results.

After completing the training of all the scenarios, we were able to apply
the final model to the test data set. Table 5.1 presents the times required by
the benchmark software to run the training and test data sets simulations. It
also presents the necessary time for the ANN to be trained and predict the
test set’s flows. The Acceleration Ratio, defined in Chapter 4, was calculated
to compare both approaches’ simulation times.

Data set ANN (s) Benchmark (s) Acceleration Ratio
Train 1072 35445 33
Test 4.50 67876 15084

Table 5.1: Simulation times comparison for the train and evaluation data
sets. The simulations’ details for the train and evaluation data sets by the
benchmark method are described on the footnote on page 67.

From the results presented in Table 5.1, we can observe that, in this
case, both the training and evaluation times for the ANN were much shorter
than the times required for our benchmark software (Organon) to perform the
same calculations, with Acceleration Ratios about 33 and 15084. We highlight
that, for this study, we were able to significantly reduce the training time
by applying the Transfer Learning technique, previously described. Since we
were not dealing with historical data, this approach allowed us to reduce the
training examples presented to the ANN at each training and to set a lower
number of epochs for each scenario’s training since the model’s weights were
not randomly initialized.

Once the flows Pj,t,ω at the borders between the transmission and the
distribution systems were calculated by Organon and predicted by the ANN,
for all the test scenarios generated at the First Stage, we were able to obtain
the maximum monthly demand Pj,m,a,ω, ∀m ∈ M , a ∈ A and ω ∈ Ω, where
M is the set of months of the year and A is the set of years in the demand
contract horizon, at each connection bus j. The cost of the demand contracts
is a function of the maximum demand values Pj,m,a,ω; hence, these values will
be adopted in the Optimization methodology, described next.
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5.2.3
Third stage: Optimizing the value of the demand contract

According to (Street et al., 2020), the stochastic optimization models
used in the third stage of the demand contracting process must minimize
the risk measure of the cost scenarios, being subject to the constraints that
define the different components of cost scenarios (fixed, variable and penalty),
which translate the regulatory rules and incorporate the risk aversion profile
of the distributor. In the case of the demand contract optimization, the model
used corresponds to a stochastic linear optimization problem, which will be
described in more detail.

As mentioned before, the optimization of the demand contract value must
be performed based on regulatory standards, which define the cost to be paid
by the distributors. Considering a border bus j, the total cost can be divided
into two parts (Telles et al., 2018):

– Fixed Cost (cFj,m,a): depends on the value of the demand contract (Mj,a)
and the associated tariff (Tj,a). Thus, it is a deterministic component:

cFj,m,a = Mj,aTj,a, m ∈M,a ∈ A (5-1)

– Variable Cost: function of the set of scenarios P̃j,m,a for the maximum
monthly demand in a border bus j; therefore, it is a stochastic compo-
nent. This cost is related to three components, which can be obtained
by subtracting Mj,a from the maximum demand, as follows:

1. Cost component for maximum demand (c̃MD
j,m,a): represents the

rule that establishes that, in addition to the penalties, the monthly
cost is defined considering the maximum between Mj,a and P̃j,m,a.
Thus, if P̃j,m,a ≤ Mj,a, only the fixed cost cFj,m,a should be paid;
otherwise, there will be an additional cost c̃MD

j,m,a applied to the
difference P̃j,m,a −Mj,a at a tariff Tj,a. Therefore, this cost can be
described by:

c̃MD
j,m,a = max[0, P̃j,m,a −Mj,a]Tj,a, ∀m ∈M,a ∈ A (5-2)

2. Cost component for the monthly penalty (c̃UCj,m,a): applied
for undercontracting cases. If P̃j,m,a > 1.1Mj,a, then c̃UCj,m,a > 0;
otherwise, this component is null. The difference P̃j,m,a− 1.1Mj,a is
valued at a tariff equal to three times Tj,a, i.e.:

c̃UCj,m,a = max[0, P̃j,m,a − 1.1Mj,a]3Tj,a, ∀m ∈M,a ∈ A (5-3)
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3. Cost component for the annual penalty (c̃OCj,a ): applied for
cases of overcontracting. If the maximum annual demand P̃MAX

j,a is
less than 90% of the contracted value Mj,a, then there will be a
cost of overcontracting c̃OCj,a ; otherwise, this cost will be zero. The
difference 0.9Mj,a − P̃MAX

j,a is valued at a tariff equal to 12 times
Tj,a, i.e.:

c̃OCj,a = max[0, 0.9Mj,a − P̃MAX
j,a ]12Tj,a, ∀a ∈ A (5-4)

Considering all the previously defined components, the total annual cost
for the demand contract can be represented by:

c̃Tj,a = c̃OCj,a +
12∑
m=1

(cFj,m,a + c̃MD
j,m,a + c̃UCj,m,a), ∀a ∈ A (5-5)

According to (Street et al., 2020), the “hiring policy” comprises a set of
procedures and processes that must be followed in order to obtain the value
referring to the power imports that must be contracted by the distributors.
Thus, to define the hiring policy, the following information is required:

– corporate, regulatory and operational parameters that affect decisions
and financial results;

– visions of the future, referring to uncertainties that may affect financial
results, or cause limitations to the process of decision-making by distrib-
utors;

– risk profile that the distributor wishes to adopt in the contract under
analysis.

Thus, there must be a process, based on quantitative methods for the
obtainment of the demand contract, by border, that minimizes the expected
cost by the risk profile adopted, given the initial conditions and future forecasts
(Street et al., 2020).

However, quantitative models have some limitations when applied to
assist the decision making process, as they aim to produce robust decisions
to the uncertainties that affect the problem, characterized by the set of
scenarios, obtained in the Second Stage, designed under a set of hypotheses.
Such scenarios aim to map the various possible realizations of the uncertainty
variables, in order to characterize the range of costs and their respective
probabilities of occurrence, which can be produced by a given hiring decision.
Even so, only one scenario, distinct from all of those previously considered, will
actually occur. Thus, the objectives and risk metrics to be considered when
optimizing the demand contract should be able to reflect risk aversion profiles
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that consider the tradeoff between the possibility of occurrence of unfavorable
scenarios and the inherent cost in more conservative decisions. These metrics
must also be robust, that is, they must be able to produce an acceptable result,
even under the occurrence of scenarios not contemplated, as long as they are
similar to those used. One of the frameworks that traditionally addresses this
tradeoff in optimization models under uncertainty is the risk-averse stochastic
optimization (Street et al., 2020).

The hiring decision involves informing the National System Operator
(ONS, in Portuguese “Operador Nacional do Sistema”), until the month of
October of a given year, the demand value that will be contracted for the
following year. Once the demand contract has been decided, the import levels
and network status are observed over the contract’s months and, depending on
the impacts of these uncertainty variables on the performance indicators (which
may involve penalty costs, losses, network security, among others), corrective
actions can be taken (Street et al., 2020).

Given the previous cost functions, one can proceed to a risk analysis
that leads to decision making under uncertainty. Risk can be defined as
the probability that a given cost is greater than expected. Thus, the more
conservative a decision is, the lower the probability of the cost under analysis
being higher than expected and the higher the fixed costs (Telles et al., 2018).

According to (Street et al., 2020), two metrics widely used in risk
management analysis are: Expected Value ([.]) and Conditional Value at Risk
(CV aRα[.] ). The Expected Value is a measure that provides the average cost,
when applied to a random variable C̃ : Ω→ R, which represents the cost of a
contract, for example. Therefore, this metric comprises all the cost scenarios
of the sample space, corresponding to the average of the scenarios, weighted
by their probabilities, that is:

[C̃] =
∑
ω∈Ω

C̃(ω)πω, (5-6)

where πω represents the probability of occurrence of each scenario ω. Therefore,
the Expected Value is a risk-neutral metric, as it considers all scenarios and
their respective probabilities of occurrence.

The Expected Value does not offer information about the scenarios
that expose the decision maker to the worst costs. On the other hand, the
CV aRα[.] corresponds to the average of the (1 − α) × 100% worst scenarios,
in terms of probability and it can be interpreted as a measure of the worst
possible situation, that is, the most costly scenarios. Therefore, the CVaR and
the Expected Value correspond to a more and less conservative risk profile,
respectively (Street et al., 2020).
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Thus, to obtain the optimal contract value Mj,a, for a border bus j,
in a given year a, a convex combination of CV aRα and the Expected Value
of the cost c̃Tj,a can be applied. For this, a parameter λ ∈ [0, 1] is used, which
reflects the risk aversion desired by the distributor, providing greater flexibility
to the decision maker. Hence, the higher the adopted value for λ, the more
conservative the distributor’s risk aversion profile. This convex combination
can be expressed by (Street et al., 2020):

λCV aRα(c̃Tj,a) + (1− λ)(c̃Tj,a) (5-7)
The optimization of the demand contract will minimize the risk measure

of the cost scenarios which, naturally, will avoid situations of overcontracting
and, therefore, only penalties for undercontracting will be considered. Thus,
an additional risk aversion parameter (µ), that makes it possible to limit the
CV aRα of the undercontracting costs c̃UCj,m,a, can be considered, that is:

CV aRα(c̃UCj,m,a) ≤ µcFj,m,a (5-8)
The idea of the µ parameter is to make it possible to limit the CV aRα of
the monthly cost scenarios associated with undercontracting (c̃UC). In other
words, it becomes possible to define, on average, a maximum amount to be
paid for the most aggressive monthly penalty scenarios. For this limit value
to be intuitive and easy to define, the µ value is parameterized in relation to
the fixed monthly contract cost cF . This control is inserted by including the
constraint represented by equation (5-8) in the optimization model. Thus, the
distributor will be able to define, on average, the maximum monthly amount
to be paid for the worst penalty scenarios, with this value parameterized in
relation to the fixed cost (Telles et al., 2018).

Given the influence of the decision on the cost associated with each
possible scenario, in addition to the impossibility of determining, in advance,
which scenario will actually occur, it is extremely important that multiple
scenarios, and their corresponding costs, be considered in the optimization
problem (Street et al., 2020).

Table 5.2 summarizes the nomenclature and the corresponding definitions
for the parameters, sets and variables of the optimization model. Random
variables are represented by a tilde (̃.).
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Parameters
Nomenclature Definition
λ CVaR weight in the objective function
α Quantile for the CVaR metric
µ Fixed cost percentage that limits the CVaR of the

penalty costs
πω Probability of occurrence for a scenario ω ∈ Ω
Tj,a Transmission usage tariff at j ∈ n, a ∈ A

Sets
Nomenclature Definition
A Set of years in the demand contract horizon
M Set of months of the year M = {1, 2, . . . , 12}
Ω Set of P̃j,m,a scenarios
n Set of connection buses between distribution and trans-

mission systems
Variables

Nomenclature Definition
Mj,a Value of the demand contract at j ∈ n, a ∈ A
Pj,m,a,ω Monthly maximum demand at j ∈ n, m ∈ M , a ∈ A ,

ω ∈ Ω
P̃MAX
j,a Stochastic annual maximum demand at j ∈ n, a ∈ A

cFj,m,a Fixed cost of the demand contract at j ∈ n, m ∈ M ,
a ∈ A

c̃Tj,a Stochastic annual total cost for the demand contract at
j ∈ n, a ∈ A

c̃MD
j,m,a Stochastic cost for maximum demand at j ∈ n, m ∈M ,

a ∈ A
c̃OCj,a Stochastic cost for overcontracting at j ∈ n, a ∈ A

c̃UCj,m,a Stochastic cost for undercontracting at j ∈ n, m ∈M ,
a ∈ A

za and σa,ω Auxiliary variables to represent the CV aR operator in
the objective function

dMD
m,a,ω, dUCm,a,ω and dOCa,ω Auxiliary variables to represent the max operator of the

variable cost in the Optimization problem
zUCm,a and σUCm,a,ω Auxiliary variables to represent the CV aR operator in

the µ parameter constraints

Table 5.2: Nomenclature adopted in the optimization model.
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Next, we present the multi-period stochastic optimization model that
defines the value Mj,a of the demand contract, for a horizon A and a border
bus j. In this model, each scenario ω ∈ Ω has a probability of occurrence πω
(Telles et al., 2018):

min
Mj,a

∑
a∈A

[λ(za + 1
1− α

∑
ω∈Ω

πωσa,ω) + (1− λ)
∑
ω∈Ω

πωc
T
j,a,ω] (5-9)

subject to:

CVaR constraints for the objective function:

σa,ω ≥ cTj,a,ω − za, ∀a ∈ A , ω ∈ Ω (5-10)

σa,ω ≥ 0, ∀a ∈ A , ω ∈ Ω (5-11)
Constraints on cost definitions:

cTj,a,ω = cOCj,a,ω +
∑
m∈M

(cFj,m,a + cMD
j,m,a,ω + cUCj,m,a,ω), ∀a ∈ A , ω ∈ Ω (5-12)

cFj,m,a = Mj,aTj,a, ∀m ∈M , a ∈ A (5-13)

cMD
j,m,a,ω = dMD

m,a,ωTj,a, ∀m ∈M , a ∈ A , ω ∈ Ω (5-14)

cUCj,m,a,ω = dUCm,a,ω3Tj,a, ∀m ∈M , a ∈ A , ω ∈ Ω (5-15)

cOCj,a,ω = dOCa,ω12Tj,a, ∀a ∈ A , ω ∈ Ω (5-16)
Maximum Demand Constraints:

dMD
m,a,ω ≥ Pj,m,a,ω −Mj,a, ∀m ∈M , a ∈ A , ω ∈ Ω (5-17)

dMD
m,a,ω ≥ 0, ∀m ∈M , a ∈ A , ω ∈ Ω (5-18)

Mj,a ≥ 0, ∀a ∈ A (5-19)
Undercontracting constraints:

dUCm,a,ω ≥ Pj,m,a,ω − 1.1Mj,a, ∀m ∈M , a ∈ A , ω ∈ Ω (5-20)

dUCm,a,ω ≥ 0, ∀m ∈M , a ∈ A , ω ∈ Ω (5-21)
Overcontracting constraints:

dOCa,ω ≥ 0.9Mj,a − PMAX
j,a,ω , ∀a ∈ A , ω ∈ Ω (5-22)
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dOCa,ω ≥ 0, ∀a ∈ A , ω ∈ Ω (5-23)
µ parameter constraints:

zUCm,a + 1
1− α

∑
ω∈Ω

πωσ
UC
m,a,ω ≤ µMj,aTj,a, ∀m ∈M , a ∈ A (5-24)

σUCm,a,ω ≥ (dUCm,a,ω3Tj,a)− zUCm,a, ∀m ∈M , a ∈ A , ω ∈ Ω (5-25)

σUCm,a,ω ≥ 0, ∀m ∈M , a ∈ A , ω ∈ Ω (5-26)
In the objective function presented in (5-9), the risk measure defined in

(5-7) is minimized, with the demand contract value (Mj,a) being the decision
variable. The CVaR formulation for minimization problems, used in equations
(5-9)-(5-11) and (5-24)-(5-26), is presented in (Street, 2010). As mentioned
before, constraints (5-12)-(5-16) are the definition of costs; constraints (5-
17)-(5-21) represent the use of the max operator, as in (5-2) and (5-3), and
constraints (5-24)-(5-26) include the risk parameter µ, which limits the value of
CVaR in penalty cost scenarios. We highlight that variables z and σ correspond
to auxiliary variables used to represent the CVaR operator in the respective
constraints.

The optimization model described was implemented to obtain the opti-
mal annual demand contracts for the distribution system’s connection points
with the transmission network, considering the power flow results, for the sce-
narios in the test data set, from both Organon and the trained ANN. Different
risk aversion profiles were assessed through the variation of the risk aversion
parameter µ. For the first hiring strategy, we considered a conservative profile
in relation to the penalty for undercontracting, by assuming the risk parameter
µ = 1%. We also evaluated two additional less conservative hiring strategies,
setting µ = 5% and µ = 10%, respectively.

We highlight that the µ value cannot vary broadly because the optimiza-
tion of demand contracts is, essentially, a risk aversion problem; thus, if the
value arbitrated for µ is too large, constraints (5-24), (5-25) and (5-26) do not
influence the optimization result. For all the contracting strategies evaluated,
we adopted α = 95% for the CVaR metric. We also considered that the Ex-
pected Value and the CVaR are equally relevant to the objective function by
setting λ = 0.5. Besides that, we considered real values for the tariff Tj,a, for
each border, from the distribution system under analysis5.

5In general, different tariff values are considered according to the period of the day. For
simplicity, in this work, we consider a single tariff value for all periods.
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We excluded from the demand contracts’ optimization study two borders:
Border 5 was eliminated because it presents very low values for power flows and
is only used in case of contingencies, and Border 12 was excluded from the study
because it exported power to the transmission system, instead of importing as
it was observed in Chapter 4. Table 5.3 presents the values obtained for the
optimal demand contracts, considering the flows calculated by Organon and
by the ANN, and the corresponding MAPE, for all hiring strategies.

From Table 5.3, we can observe that the most conservative hiring strategy
(Strategy 1) resulted in the lowest average MAPE. Hence, we adopted these
results as our optimal demand contracts for this distribution system. In the
next section, to conclude the results of the demand contracting study, we
will present additional risk and quality indicators for the annual contract,
associated with the optimal results for the borders that presented the lowest
and highest prediction errors for Strategy 1 (Borders 10 and 6, respectively).
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5.3
Analysis of Results

Once the distributor’s risk profile has been defined and the optimal con-
tracting solution has been obtained, we can evaluate this solution’s perfor-
mance within the uncertainty space defined for the problem through strategic
risk and quality indicators of the optimal solution. Among these indicators, we
highlight the following (Street et al., 2020):

– Probability of undercontracting: informs, within the set of scenarios
that characterize the uncertainty of the problem, the probability of
undercontracting.

– Probability of overcontracting: informs, within the set of scenarios
that characterize the uncertainty of the problem, the probability of
overcontracting.

– Average of the total cost: reports the average of the total cost
(described by Equation (5-5), including fixed, variable, and penalty costs)
of the scenarios for the optimal contract. As this indicator covers all
scenarios, it is risk-neutral.

– CVaR of the total cost: indicates the CV aR95% of the scenarios of the
total cost components. Hence, this indicator corresponds to a measure
aimed at more aggressive scenarios (higher cost) and, therefore, has a
conservative bias.

– Worst scenario of the total cost: corresponds to the most conserva-
tive measure among all indicators. Informs the highest amount that the
distributor can pay within the sample space defined by the scenarios set.

Aiming to evaluate the quality of the ANN’s results for Strategy 1, we
selected the borders that produced the lowest and the highest prediction errors
(Borders 10 and 6, respectively) and compared the results obtained for the
optimal contracts and for the indicators described above.

Figures 5.5a and 5.5b presents the optimal demand contract decision for
the results obtained by Organon and the ANN for Border 10, respectively.
Table 5.4 compares the risk and quality indicators for each of the optimal
solutions obtained for Border 10.

DBD
PUC-Rio - Certificação Digital Nº 1821583/CA



Chapter 5. Application of ANN methodology 95

(a) Optimal hiring result for Border 10 - Organon.

(b) Optimal hiring result for Border 10 - ANN.

Figure 5.5: Comparison of the optimal contract’s results obtained by Organon
and by the ANN for Border 10. In the Figures, the blue dotted lines represent
the monthly maximum and minimum demand scenarios for the annual horizon;
the black dashed lines correspond to the monthly 5%, 50%, and 95% quantiles
for the demand scenarios; the solid red line represents the demand contract
value for the annual horizon; the red dashed lines represent the 110% and 90%
limits for overcontracting and undercontracting, respectively.

From the results presented in Figures 5.5a and 5.5b and Table 5.4, we can
observe that none of the approaches presented any overcontracting scenarios.
In the flow results obtained by Organon, three scenarios induced penalties for
undercontracting while, in the ANN’s results, four scenarios produced these
penalties. However, for both of the methods, these penalties were provoked by
scenarios with peaks in the flows at the beginning and end of the year horizon
for the contract. Besides that, all the indicators calculated for the Organon
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Indicator Organon ANN
Optimal contract (MW) 115.81 115.33

Probability of undercontracting 2.27% 3.00%
Probability of overcontracting 0% 0%

Average of the total cost (thousand R$) 3708.72 3686.04
CVaR of the total cost (thousand R$) 3788.38 3786.06

Worst scenario of the total cost (thousand R$) 3824.14 3859.33

Table 5.4: Comparison of optimal contract parameters - Border 10 (Strategy
1).

and ANN results were fairly close.
Figures 5.6a and 5.6b and Table 5.5 compare the optimal results for the

demand contract obtained for Border 6. Since this border presented the higher
prediction errors for the ANN approach, this example is useful for evaluating
the impacts of the predictions’ errors.

For this case, we can observe that the ANN produced lower results for
the optimal contract, as it was also verified in the results from Border 10.
However, the ANN’s predictions for Border 10 were more accurate than for
Border 6. Thus, in this case, a higher increase in the overcontracting and
undercontracting probabilities produced by the ANN, compared to the ones
obtained by Organon, is expected. Consequently, while the results obtained
from Organon do not indicate penalties for overcontracting, the ANN result
does. Also, the ANN predictions present two scenarios with the possibility of
undercontracting, while Organon presents only one.

However, despite the increase in the probability of penalties in the ANN’s
result, we can observe from Table 5.5 that the ANN’s costs are smaller than
Organon’s. This is due to the fact that the penalties from the ANN’s solution
constitute a low cost to the distributor, and the optimal contract obtained
by this approach is smaller than the one obtained by Organon. Hence, the
optimal contract obtained by the ANN produces lower costs when compared to
Organon’s contract for Border 6. Nonetheless, it is important to highlight that,
although the costs should be minimized, the optimal contract value should
always consider the distributor’s risk aversion profile. Therefore, low contract
values for distributors with a highly conservative profile may incur in great
penalty costs.
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(a) Optimal hiring result for Border 6 - Organon.

(b) Optimal hiring result for Border 6 - ANN.

Figure 5.6: Comparison of the optimal contract’s results obtained by Organon
and by the ANN for Border 6. In the Figures, the blue dotted lines represent
the monthly maximum and minimum demand scenarios for the annual horizon;
the black dashed lines correspond to the monthly 5%, 50%, and 95% quantiles
for the demand scenarios; the solid red line represents the demand contract
value for the annual horizon; the red dashed lines represent the 110% and 90%
limits for overcontracting and undercontracting, respectively.
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Metric Organon ANN
Optimal contract (MW) 86.41 83.25

Probability of undercontracting 0.76% 1.52%
Probability of overcontracting 0% 8.33%

Average of the total cost (thousand R$) 2853.03 2751.54
CVaR of the total cost (thousand R$) 2872.97 2810.30

Worst scenario of the total cost (thousand R$) 2894.20 2840.99

Table 5.5: Comparison of optimal contract parameters - Border 6 (Strategy 1).

From the results obtained for the demand contracts, we can conclude
that the ANN methodology proposed in Chapter 4 constitutes an adequate
alternative for obtaining optimal demand contracts for distribution systems.
The application presented in this Chapter for the proposed methodology was
able to accurately substitute the benchmark software. The great advantage of
the proposed approach relies on the Acceleration Ratios described in Table 5.1:
for the first contract strategy, for example, once the ANN was appropriately
trained, we were able to generate power flow results 15084 times faster than
the benchmark method, with an average MAPE of 1.69%. We highlight that all
the contracting strategies evaluated presented accurate results for the ANN’s
predictions; the First Strategy choice was mainly due to the fact that it is the
most conservative one.
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6
Conclusion

This work has presented a Machine Learning model (implemented in
Julia) to calculate active losses and power flows in a distribution system.
Solution methodologies presented in the related literature are not always able
to model some unique characteristics of these systems and require previous
knowledge of topology features for every operating point under analysis, which
is difficult to be obtained for distribution networks.

To address these issues, the proposed approach utilizes Artificial Neural
Networks (ANNs) to predict the system’s losses and line flows. Two case studies
were conducted: the first one aimed to calculate active losses in the IEEE 34-
bus system, while the second aimed to calculate power flows at the borders
between a real distribution system and the Brazilian transmission network.

The implementation of this method occurs in two stages: first is the train-
ing phase, in which it is necessary to run power flow calculations, conducted
by software programs, such as OpenDSS and Organon. In this stage, prior
knowledge of the buses’ loads and generations and topology features, such as
lines and transformers parameters, are required. Once the calculations are com-
pleted, we can start training the ANN by giving, as inputs, the load/generation
data and by considering as outputs the power flow results (active losses or line
flows). Hence, the ANN obtains the best model to map the given inputs to the
respective outputs. The training phase is the most time-consuming stage of
the methodology since different ANN architectures need to be evaluated, and
the ANN needs to learn the data.

Once the ANN is appropriately trained, we can move to the test phase:
in this stage, the model previously obtained is applied to unseen data. Hence,
the only previous knowledge required in this phase is the load/generation at
each bus of the system (topology features are not required anymore), and the
need to run power flow calculations is eliminated. In this phase, only matrix
operations are performed, which deeply reduces computational times.

Aiming to effectively demonstrate the applicability of the proposed
methodology, we presented the technique’s application to the obtainment
of optimal demand contracts for a real distribution system in Brazil. The
demand hiring process traditionally comprises three stages: simulation of
load/generation scenarios for the system’s buses, power flow studies, and the
contracts’ optimization.

The reported numerical experience allows drawing the following main
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results and insights:

1. The proposed methodology produced accurate approximations of active
losses and line flows, for the case studies presented, with a very signif-
icant reduction in their computational times, as demonstrated by the
Acceleration Ratios calculated. For the prediction of active losses on the
IEEE 34-bus system, this ratio was 391 for the out-of-sample data set.
On the other hand, for the study of line flows at the borders between
a real Brazilian distribution system and the transmission network, the
ratio was even more significant, and the ANN’s out-of-sample predictions
were obtained 18806 times faster than the benchmark software.

2. The ANN approach can be considered an effective tool to obtain results
rapidly when there is no need to run power flow calculations or in
situations in which the topology features are unavailable or incomplete.
However, we observed that predictions for the out-of-sample data were
worse than for the in-sample set since, for unseen samples, the ANN must
generalize its learning from the training phase. Hence, the in-sample data
set must contain enough information, with good quality, to allow the
ANN to generalize to unseen data correctly.

3. For the methodology application in the demand contracting process,
since it consists of a decision under uncertainty, there was a need to
simulate future scenarios, representing the variability of loads and gen-
erations, outside the variation range from the historical data set. Hence,
since the ANN is not able to extrapolate, with good accuracy, the solu-
tions for new inputs outside the expected variation range, it was neces-
sary to perform a new training for the ANN instead of directly applying
the trained model obtained for the historical data set. Besides that, an
additional preprocessing activity was necessary: in order to obtain accu-
rate results for the optimal contracts, we selected a representative group
of scenarios to be included in the training phase.

4. Regardless of the risk aversion profile adopted by the distributor, power
flow calculations, usually performed according to classical methods, could
be replaced by the ANN methodology in the demand hiring process with
an appealing tradeoff between accuracy and efficiency: average errors of
the order of 2% were obtained for the optimal contract values in the most
conservative hiring strategy, and the computational time was reduced by
15084 times.
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We believe this work motivates several possible avenues of research. For
example, future studies may include: evaluating the effects of a more extensive
load/generation scenarios set in the demand hiring process to the optimal
contracts’ results; an extension of the methodology to consider the possibility
of contingencies in the system. By determining the most current contingencies
in a distribution system, we would be able to train an ANN for each of these
possibilities. This way, during the system’s operation, given the occurrence
of a contingency, the corresponding ANN would be selected, and the correct
approximations for the system’s active losses or line flows could be obtained;
evaluating the application of the methodology to the transmission system
expansion planning.
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